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CHAPTER ONE

ELECTRIC CHARGE

1.1 Electricity appeared to its early investigators as an extraordi-
nary phenomenon. To draw from bodies the “subtle fire,” as it was
sometimes called, to bring an object into a highly electrified state, to
produce a steady flow of current, called for skillful contrivance. Except
for the spectacle of lightning, the ordinary manifestations of nature,
from the freezing of water to the growth of a tree, seemed to have no
relation to the curious behavior of electrified objects. We know now
that electrical forces largely determine the physical and chemical
properties of matter over the whole range from atom to living cell. For
this understanding we have to thank the scientists of the nineteenth
century, Ampere, Faraday, Maxwell, and many others, who discov-
ered the nature of electromagnetism, as well as the physicists and
chemists of the twentieth century who unraveled the atomic structure
of matter. ’

Classical electromagnetism deals with electric charges and cur-
rents and their interactions as if all the quantities involved could be
measured independently, with unlimited precision. Here classical
means simply “nonquantum.” The quantum law with its constant % is
ignored in the classical theory of electromagnetism, just as it is in ordi-
nary mechanics. Indeed, the classical theory was brought very nearly
to its present state of completion before Planck’s discovery. It has sur-
vived remarkably well. Neither the revolution of quantum physics nor
the development of special relativity dimmed the luster of the electro-
magnetic field equations Maxwell wrote down 100-years ago.

Of course the theory was solidly based on experiment, and
because of that was fairly secure within its original range of applica-
tion—to coils, capacitors, oscillating currents, and eventually radio
waves and light waves. But even so great a success does not guarantee
validity in another domain, for instance, the inside of a molecule.

Two facts help to explain the continuing importance in modern
physics of the classical description of electromagnetism. First, special
relativity required no revision of classical electromagnetism. Histori-
cally speaking, special relativity grew out of classical electromagnetic
theory and experiments inspired by it. Maxwell’s field equations,
developed long before the work of Lorentz and Einstein, proved to be
entirely compatible with relativity. Second, quantum modifications of
the electromagnetic forces have turned out to be unimportant down to
distances less than 107'° centimeters (cm), 100 times smaller than the
atom. We can describe the repulsion and attraction of particles in the
atom using the same laws that apply to the leaves of an electroscope,
although we need quantum mechanics to predict how the particles will
behave under those forces. For still smaller distances, a fusion of elec-
tromagnetic theory and quantum theory, -ealled quantum electrody-
namics, has been remarkably successful. Its predictions are confirmed
by experiment down to the smallest distances yet explored.
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It is assumed that the reader has some acquaintance with the
elementary facts of electricity. We are not going to review all the
experiments by which the existence of electric charge was demon-
strated, nor shall we review all the evidence for the electrical consti-
tution of matter. On the other hand, we do want to look carefully at
the experimental foundations of the basic laws on which all else
depends. In this chapter we shall study the physics of stationary elec-
tric charges—electrostatics.

Certainly one fundamental property of electric charge is its exis-
tence in the two varieties that were long ago named positive and neg-
ative. The observed fact is that all charged particles can be divided
into two classes such that all members of one class repel each other,
while attracting members of the other class. If two small electrically
charged bodies 4 and B, some distance apart, attract one another, and
if A attracts some third electrified body C, then we always find that
B repels C. Contrast this with gravitation: There is only one kind of
gravitational mass, and every mass attracts every other mass.

One may regard the two kinds of charge, positive and negative,
as opposite manifestations of one quality, much as right and left are
the two kinds of handedness. Indeed, in the physics of elementary par-
ticles, questions involving the sign of the charge are sometimes linked
to a question of handedness, and to another basic symmetry, the rela-
tion of a sequence of events, @, then b, then ¢, to the temporally
reversed sequence ¢, then b, then a. It is only the duality of electric
charge that concerns us here. For every kind of particle in nature, as
far as we know, there can exist an antiparticle, a sort of electrical
“mirror image.” The antiparticle carries charge of the opposite sign.
If any other intrinsic quality of the particle has an opposite, the anti-
particle has that too, whereas in a property which admits no opposite,
such as mass, the antiparticle and particle are exactly alike. The elec-
tron’s charge is negative; its antiparticle, called a positron, has a pos-
itive charge, but its mass is precisely the same as that of the electron.
The proton’s antiparticle is called simply an antiproton; its electric
charge is negative. An electron and a proton combine to make an ordi-
nary hydrogen atom. A positron and an antiproton could combine in
the same way to make an atom of antihydrogen. Given the building
blocks, positrons, antiprotons, and antineutrons,t there could be built
up the whole range of antimatter, from antihydrogen to antigalaxies.
There is a practical difficulty, of course. Should a positron meet an
electron or an antiproton meet a proton, that pair of particles will
quickly vanish in a burst of radiation. It is therefore not surprising that
even positrons and antiprotons, not to speak of antiatoms, are exceed-
ingly rare and short-lived in our world. Perhaps the universe contains,

TAlthough the electric charge of each is zero, the neutron and its antiparticle are not
interchangeable. In certain properties that do not concern us here, they are opposite.
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FIGURE 1.1
Charged particles are created in pairs with equal and
opposite charge.

somewhere, a vast concentration of antimatter. If so, its whereabouts
is a cosmological mystery.

The universe around us consists overwhelmingly of matter, not
antimatter. That is to say, the abundant carriers of negative charge
are electrons, and the abundant carriers of positive charge are protons.
The proton is nearly 2000 times heavier than the electron and very
different, too, in some other respects. Thus matter at the atomic level
incorporates negative and positive electricity in quite different ways.
The positive charge is all in the atomic nucleus, bound within a mas-
sive structure no more than 10™'% ¢cm in size, while the negative charge
is spread, in effect, through a region about 10* times larger in dimen-
sions. It is hard to imagine what atoms and molecules—and all of
chemistry—would be like, if not for this fundamental electrical asym-
metry of matter. '

What we call negative charge, by the way, could just as well
have been called positive. The name was a historical accident. There
is nothing essentially negative about the charge of an electron. It is
not like a negative integer. A negative integer, once multiplication has
been defined, differs essentially from a positive integer in that its
square is an integer of opposite sign. But the product of two charges
is not a charge; there is no comparison.

Two other properties of electric charge are essential in the elec-
trical structure of matter: Charge is conserved, and charge is quan-
tized. These properties involve quantity of charge and thus imply a
measurement of charge. Presently we shall state precisely how charge
can be measured in terms of the force between charges a certain dis-
tance apart, and so on. But let us take this for granted for the time
being, so that we may talk freely about these fundamental facts.

CONSERVATION OF CHARGE
1.2 The total charge in an isolated system never changes. By iso-
lated we mean that no matter is allowed to cross the boundary of the
system. We could let light pass into or out of the system, since the
“particles” of light, called photons, carry no charge at all. Within
the system charged particles may vanish or reappear, but they always
do so in pairs of equal and opposite charge. For instance, a thin-walled
box in a vacuum exposed to gamma rays might become the scene of
a “pair-creation” event in which a high-energy photon ends its exis-
tence with the creation of an electron and a positron (Fig. 1.1). Two
electrically charged particles have been newly created, but the net
change in total charge, in and on the box, is-zero. An event that would
violate the law we have just stated would be the creation of a positively
charged particle without the simultaneous creation of a negatively
charged particle. Such an occurrence has never been observed.

Of course, if the electric charges of an electron and a positron
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were not precisely equal in magnitude, pair creation would still violate
the strict law of charge conservation. That equality is a manifestation
of the particle-antiparticle duality already mentioned, a universal
symmetry of nature.

One thing will become clear in the course of our study of elec-
tromagnetism: Nonconservation of charge would be quite incompati-
ble with the structure of our present electromagnetic theory. We may
therefore state, either as a postulate of the theory or as an empirical
law supported without exception by all observations so far, the charge
conservation law:

The total electric charge in an isolated system, that is, the alge-
braic sum of the positive and negative charge present at any
time, never changes.

Sooner or later we must ask whether this law meets the test of
relativistic invariance. We shall postpone until Chapter 5 a thorough
discussion of this important question. But the answer is that it does,
and not merely in the sense that the statement above holds in any
given inertial frame but in the stronger sense that observers in differ-
ent frames, measuring the charge, obtain the same number. In other
words the total electric charge of an isolated system is a relativistically
invariant number.

QUANTIZATION OF CHARGE

1.3 The electric charges we find in nature come in units of one mag-
nitude only, equal to the amount of charge carried by a single electron.
We denote the magnitude of that charge by e. (When we are paying
attention to sign, we write —e for the charge on the electron itself.)
We have already noted that the positron carries precisely that amount
of charge, as it must if charge is to be conserved when an electron and
a positron annihilate, leaving nothing but light. What seems more
remarkable is the apparently exact equality of the charges carried by
all other charged particles—the equality, for instance, of the positive
charge on the proton and the negative charge on the electron.

That particular equality is easy to test experimentally. We can
see whether the net electric charge carried by a hydrogen molecule,
which consists of two protons and two electrons, is zero. In an exper-
iment carried out by J. G. King,T hydrogen gas was compressed into

1J. G. King, Phys. Rev. Lett. 5:562 (1960). References to previous tests of charge
equality will be found in this article and in the chapter by V. W. Hughes in “Gravi-
tation and Relativity,” H. Y. Chieu and W. F. Hoffman (eds.), W. A. Benjamin, New
York, 1964, chap. 13.
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a tank that was electrically insulated from its surroundings. The tank
contained about 5 X 10% molecules [approximately 17 grams (gm)]
of hydrogen. The gas was then allowed to escape by means which pre-
vented the escape of any ion—a molecule with an electron missing or
an extra electron attached. If the charge on the proton differed from
that on the electron by, say, one part in a billion, then each hydrogen
molecule would carry a charge of 2 X 10%, and the departure of the
whole mass of hydrogen would alter the charge of the tank by 10'%e,
a gigantic effect. In fact, the experiment could have revealed a resid-
ual molecular charge as small as 2 X 10™%%, and none was observed.
This proved that the proton and the electron do not differ in magni-
tude of charge by more than 1 part in 10%.

Perhaps the equality is really exact for some reason we don’t yet
understand. It may be connected with the possibility, suggested by
recent theories, that a proton can, very rarely, decay into a positron
and some uncharged particles. If that were to occur, even the slightest
discrepancy between proton charge and positron charge would violate
charge conservation. Several experiments designed to detect the decay
of a proton have not yet, as this is written in 1983, registered with
certainty a single decay. If and when such an event is observed, it will
show that exact equality of the magnitude of the charge of the proton
and the charge of the electron (the positron’s antiparticle) can be
regarded as a corollary of the more general law of charge
conservation.

That notwithstanding, there is now overwhelming evidence that
the internal structure of all the strongly interacting particles called
hadrons—a class which includes the proton and the neutron—involves
basic units called quarks, whose electric charges come in multiples of
e/3. The proton, for example, is made with three quarks, two of
charge %e and one with charge —’%e. The neutron contains one quark
of charge %e and two quarks with charge —J%e.

Several experimenters have searched for single quarks, either
free or attached to ordinary matter. The fractional charge of such a
quark, since it cannot be neutralized by any number of electrons or
protons, should betray the quark’s presence. So far no fractionally
charged particle has been conclusively identified. There are theoretical
grounds for suspecting that the liberation of a quark from a hadron is
impossible, but the question remains open at this time.

The fact of charge quantization lies outside the scope of classical
electromagnetism, of course. We shall usually ignore it and act as if
our point charges g could have any strength whatever. This will not
get us into trouble. Still, it is worth remembering that classical theory
cannot be expected to explain the structure of the elementary parti-
cles. (It is not certain that present quantum theory can either!) What
holds the electron together is as mysterious as what fixes the precise
value of its charge. Something more than electrical forces must be
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involved, for the electrostatic forces between different parts of the
electron would be repulsive.

In our study of electricity and magnetism we shall treat the
charged particles simply as carriers of charge, with dimensions so
small that their extension and structure is for most purposes quite
insignificant. In the case of the proton, for example, we know from
high-energy scattering experiments that the electric charge does not
extend appreciably beyond a radius of 107!* cm. We recall that Ruth-
erford’s analysis of the scattering of alpha particles showed that even
heavy nuclei have their electric charge distributed over a region
smaller than 10™"" cm. For the physicist of the nineteenth century a
“point charge” remained an abstract notion. Today we are on familiar
terms with the atomic particles. The graininess of electricity is so con-
spicuous in our modern description of nature that we find a point
charge less of an artificial idealization than a smoothly varying distri-
bution of charge density. When we postulate such smooth charge dis-
tributions, we may think of them as averages over very large numbers
of elementary charges, in the same way that we can define the mac-
roscopic density of a liquid, its lumpiness on a molecular scale
notwithstanding.

COULOMB’S LAW
1.4 As you probably already know, the interaction between electric
charges at rest is described by Coulomb’s law: Two stationary electric
charges repel or attract one another with a force proportional to the
product of the magnitude of the charges and inversely proportional to
the square of the distance between them.

We can state this compactly in vector form:

F,=k Q1422r21 (1)
I

Here ¢, and g, are numbers (scalars) giving the magnitude and sign
of the respective charges, f,; is the unit vector in the directionf from
charge 1 to charge 2, and F, is the force acting on charge 2. Thus Eq.
1 expresses, among other things, the fact that like charges repel and
unlike attract. Also, the force obeys Newton’s third law; that is, F, =
—F.

The unit vector f,, shows that the force is parallel to the line
joining the charges. It could not be otherwise unless space itself has
some built-in directional property, for with two point charges alone in
empty and isotropic space, no other direction could be singled out.

1The convention we adopt here may not seem the natural choice, but it is more con-
sistent with the usage in some other parts of physics and we shall try to follow it
throughout this book. i
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FIGURE 1.2

Coulomb’s law expressed in CGS electrostatic units
(top) and in Sl units (bottom). The constant ¢ and the
factor relating coulombs to esu are connected, as we
shall learn later, with the speed of light. We have
rounded off the constants in the figure to four-digit

accuracy. The precise values are given in Appendix E.

If the point charge itself had some internal structure, with an
axis defining a direction, then it would have to be described by more
than the mere scalar quantity g. It is true that some elementary par-
ticles, including the electron, do have another property, called spin.
This gives rise to a magnetic force between two electrons in addition
to their electrostatic repulsion. This magnetic force does not, in gen-
eral, act in the direction of the line joining the two particles. It
decreases with the inverse fourth power of the distance, and at atomic
distances of 10~® cm the Coulomb force is already about 10* times
stronger than the magnetic interaction of the spins. Another magnetic
force appears if our charges are moving—hence the restriction to sta-
tionary charges in our statement of Coulomb’s law. We shall return
to these magnetic phenomena in later chapters. '

Of course we must assume, in writing Eq. 1, that both charges
are well localized, each occupying a region small compared with r,;.
Otherwise we could not even define the distance r,;, precisely.

The value of the constant & in Eq. 1 depends on the units in
which r, F, and g are to be expressed. Usually we shall choose to mea-
sure r,; in cm, F in dynes, and charge in electrostatic units.(esu). Two
like charges of 1 esu each repel one another with a force of 1 dyne
when they are 1 cm apart. Equation 1, with £ = 1, is the definition
of the unit of charge in CGS electrostatic units, the dyne having
already been defined as the force that will impart an acceleration of
one centimeter per second per second to a one-gram mass. Figure 1.2a
is just a graphic reminder of the relation. The magnitude of e, the
fundamental quantum of electric charge, is 4.8023 X 10710 esu.

We want to be familiar also with the unit of charge called the
coulomb. This is the unit for electric charge in the Systéme Interna-
tionale (SI) family of units. That system is based on the meter, kilo-
gram, and second as units of length, mass, and time, and among its
electrical units are the familiar volt, ohm, ampere, and watt.

The SI unit of force is the newton, equivalent to exactly 10°
dynes, the force that will cause a one-kilogram mass to accelerate at
one meter per second per second. The coulomb is defined by Eq. 1 with
F in newtons, r,; in meters, charges ¢, and g, in coulombs, and k£ =
8.988 X 10°. A charge of 1 coulomb equals 2.998 X 10° esu. Instead
of k, it is customary to introduce a constant ¢, which is just (4wk)~!,
with which the same equation is written

1 qiq.fn
= St . 1’
drey 13 (1)

Refer to Fig. 1.2b for an example. The constant ¢ will appear in sev-
eral SI formulas that we’ll meet in the course of our study. The exact
value of ¢ and the exact relation of the coulomb to the esu can be
found in Appendix E. For our purposes the following approximations
are quite accurate enough: kK = 9 X 10% 1 coulomb = 3 X 10’ esu.
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Fortunately the electronic charge e is very close to an easily remem-
bered approximate value in either system: e = 4.8 X 1070 esu = 1.6
X 107" coulomb.

The only way we have of detecting and measuring electric
charges is by observing the interaction of charged bodies. One might
wonder, then, how much of the apparent content of Coulomb’s law is
really only definition. As it stands, the significant physical content is
the statement of inverse-square dependence and the implication that
electric charge is additive in its effect. To bring out the latter point,
we have to consider more than two charges. After all, if we had only
two charges in the world to experiment with, g; and g,, we could never
measure them separately. We could verify only that F is proportional
to 1/r3,. Suppose we have three bodies carrying charges g, g,, and
g3. We can measure the force on g; when g, is 10 cm away from g,
and g; is very far away, as in Fig. 1.3a. Then we can take g, away,
bring g3 into g’s former position, and again measure the force on q;.
Finally, we bring ¢, and g3 very close together and locate the combi-
nation 10 cm from ¢;. We find by measurement that the force on ¢,
is equal to the sum of the forces previously measured. This is a signif-
icant result that could not have been predicted by logical arguments
from symmetry like the one we used above to show that the force
between two point charges had to be along the line joining them. The
force with which two charges interact is not changed by the presence
of a third charge.

No matter how many charges we have in our system. Coulomb’s
law (Eq. 1) can be used to calculate the interaction of every pair. This
is the basis of the principle of superposition, which we shall invoke
again and again in our study of electromagnetism. Superposition
means combining two sets of sources into one system by adding the
second system “on top of”’ the first without altering the configuration
of either one. Our principle ensures that the force on a charge placed
at any point in the combined system will be the vector sum of the
forces that each set of sources, acting alone, causes to act on a charge
at that point. This principle must not be taken lightly for granted.
There may well be a domain of phenomena, involving very small dis-
tances or very intense forces, where superposition no longer holds.
Indeed, we know of quantum phenomena in the electromagnetic field
which do represent a failure of superposition, seen from the viewpoint
of the classical theory.

Thus the physics of electrical interactions comes into full view
only when we have more than two charges. We can go beyond the
explicit statement of Eq. 1 and assert that, with the three charges in
Fig. 1.3 occupying any positions whatever, the force on any one of
them, such as g3, is correctly given by this equation:

- RV ILEN 73983 @)

2 2
r3; 3

F;
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distance

. Great
—~ .,
distance

FIGURE 1.3
The force on g, in (c) is the sum of the forces on g, in
(a) and (b).
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The experimental verification of the inverse-square law of elec-
trical attraction and repulsion has a curious history. Coulomb himself
announced the law in 1786 after measuring with a torsion balance the
force between small charged spheres. But 20 years earlier Joseph
Priestly, carrying out an experiment suggested to him by Benjamin
Franklin, had noticed the absence of electrical influence within a hol-
low charged container and made an inspired conjecture: “May we not
infer from this experiment that the attraction of electricity is subject
to the same laws with that of gravitation and is therefore according to
the square of the distances; since it is easily demonstrated that were
the earth in the form of a shell, a body in the inside of it would not be
attracted to one side more than the other.”{ The same idea was the
basis of an elegant experiment in 1772 by Henry Cavendish. Caven-
dish charged a spherical conducting shell which contained within it,
and temporarily connected to it, a smaller sphere. The outer shell was
then separated into two halves and carefully removed, the inner sphere
having been first disconnected. This sphere was tested for charge, the
absence of which would confirm the inverse-square law. Assuming
that a deviation from the inverse-square law could be expressed as a
difference in the exponent, 2 + §, say, instead of 2, Cavendish con-
cluded that & must be less than 0.03. This experiment of Cavendish
remained largely unknown until Maxwell discovered and published
Cavendish’s notes a century later (1876). At that time also Maxwell
repeated the experiment with improved apparatus, pushing the limit
down to & < 1076, The latest of several modern versions of the Cav-
endish experiment,i if interpreted the same way, yielded the fantas-
tically small limit & < 1075,

During the second century after Cavendish, however, the ques-
tion of interest changed somewhat. Never mind how perfectly Cou-
lomb’s law works for charged objects in the laboratory—is there a
range of distances where it completely breaks down? There are two
domains in either of which a breakdown is conceivable. The first is the
domain of very small distances, distances less than 10™'* cm where
electromagnetic theory as we know it may not work at all. As for very
large distances, from the geographical, say, to the astronomical, a test
of Coulomb’s law by the method of Cavendish is obviously not feasi-
ble. Nevertheless we do observe certain large-scale electromagnetic
phenomena which prove that the laws of classical electromagnetism
work over very long distances. One of the most stringent tests is pro-
vided by planetary magnetic fields, in particular, the magnetic field of
the giant planet Jupiter, which was surveyed in the mission of Pioneer

tJoseph Priestly, “The History and Present State of Electricity,” vol. II, London,

1767.
1E. R. Williams, J. G. Faller, and H. Hill. Phys. Rev. Lett. 26:721 (1971).
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10. The spatial variation of this field was carefully analyzedf and
found to be entirely consistent with classical theory out to a distance
of at least 10° kilometers (km) from the planet. This is tantamount to
a test, albeit indirect, of Coulomb’s law over that distance.

To summarize, we have every reason for confidence in Cou-
lomb’s law over the stupendous range of 24 decades in distance, from
107 to 10'° cm, if not farther, and we take it as the foundation of
our description of electromagnetism.

ENERGY OF A SYSTEM OF CHARGES

1.5 In principle, Coulomb’s law is all there is to electrostatics.
Given the charges and their locations we can find all the electrical
forces. Or given that the charges are free to move under the influence
of other kinds of forces as well, we can find the equilibrium arrange-
ment in which the charge distribution will remain stationary. In the
same sense, Newton’s laws of motion are all there is to mechanics. But
in both mechanics and electromagnetism we gain power and insight
by introducing other concepts, most notably that of energy.

Energy is a useful concept here because electrical forces are con-
servative. When you push charges around in electric fields, no energy
is irrecoverably lost. Everything is perfectly reversible. Consider first
the work which must be done on the system to bring some charged
bodies into a particular arrangement. Let us start with two charged
bodies or particles very far apart from one another, as indicated at the
top of Fig. 1.4, carrying charges q; and g,. Whatever energy may have
been needed to create these two concentrations of charge originally we
shall leave entirely out of account. Bring the particles slowly together
until the distance between them is r;,. How much work does this take?

It makes no difference whether we bring g; toward g, or the
other way around. In either case the work done is the integral of the
product: force times displacement in direction of force. The force that
has to be applied to move one charge toward the other is equal to and
opposite the Coulomb force.

2 Ry
W = J. force X distance = j g-l—q-Z(T@ - 4% 3)
r=co r I
Because r is changing from oo to r,, the increment of displacement
is —dr. We know the work done on the system must be positive for
charges of like sign; they have to be pushed together. With ¢; and g,
in esu, and ry; in cm, Eq. 3 gives the work in ergs.

TL. Davis, Jr., A. S. Goldhaber, M. M. Nieto, Phys. Rev. Lett. 35:1402 (1975). For
a review of the history of the exploration of the outer limit of classical electromagne-
tism, see A. S. Goldhaber and M. M. Nieto, Rev. Mod. Phys. 43:277 (1971).

Great
distance

FIGURE 1.4
Three charges are brought near one another. First g, is
brought in; then with g, and g fixed, g3 is brought in.
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FIGURE 1.5

Because the force is central, the sections of different
paths between r + dr and r require the same amount
of work.

This work is the same whatever the path of approach. Let’s
review the argument as it applies to the two charges ¢; and ¢, in Fig.
1.5. There we have kept ¢, fixed, and we show g, moved to the same
final position along two different paths. Every spherical shell such as
the one indicated between 7 and r + dr must be crossed by both paths.
The increment of work involved, —F - ds in this bit of path, is the
same for the two paths.T The reason is that F has the same magnitude
at both places and is directed radially from g,, while ds = dr/cos 0;
hence F - ds = F dr. Each increment of work along one path is
matched by a corresponding increment on the other, so the sums must
be equal. Our conclusion holds even for paths that loop in and out, like
the dotted path in Fig. 1.5. (Why?)

Returning now to the two charges as we left them in Fig. 1.4),
let us bring in from some remote place a third charge g; and move it
to a point P; whose distance from charge 1 is r3; cm, and from charge
2, r3; cm. The work required to effect this will be

P3

Wy=— | F;-ds )

©

Thanks to the additivity of electrical interactions, which we have

already emphasized,
"J-(F31 + Fy,) - ds

"“—"F:;'ds
_J-F31'dl'- J.F32‘dl' (5)

That is, the work required to bring g3 to P; is the sum of the work
needed when g, is present alone and that needed when g, is present
alone.

49143 + 4243 (6)
731 I3

W, =

The total work done in assembling this arrangement of three charges,
which we shall call U, is therefore

9192 + 9193 + 49293 7
r12 r13 ra3

U=

We note that gy, q,, and g5 appear symmetrically in the expres-
sion above, in spite of the fact that g; was brought up last. We would
have reached the same result if g; had been brought in first. (Try it.)
Thus U is independent of the order in which the charges were assem-

THere we use for the first time the scalar product, or “dot product,” of two vectors. A
reminder: the scalar product of two vectors A and B, written A - B, is the number
A B cos 6. A and B are the magnitudes of the vectors A and B, and 6 is the angle
between them. Expressed in terms of cartesian components of the two vectors, A - B
= AB; + A,B, + A.B..
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bled. Since it is independent also of the route by which each charge
was brought in, U must be a unique property of the final arrangement
of charges. We may call it the electrical potential energy of this par-
ticular system. There is a certain arbitrariness, as always, in the def-
inition of a potential energy. In this case we have chosen the zero of
potential energy to correspond to the situation with the three charges
already in existence but infinitely far apart from one another. The
potential energy belongs to the configuration as a whole. There is no
meaningful way of assigning a certain fraction of it to one of the
charges.

It is obvious how this very simple result can be generalized to
apply to any number of charges. If we have N different charges, in

any arrangement in space, the potential energy of the system is cal-

culated by summing over all pairs, just as in Eq. 7. The zero of poten-
tial energy, as in that case, corresponds to all charges far apart.

As an example, let us calculate the potential energy of an
arrangement of eight negative charges on the corners of a cube of side
b, with a positive charge in the center of the cube, as in Fig. 1.6a.
Suppose each negative charge is an electron with charge —e, while
the central particle carries a double positive charge, 2e. Summing over
all pairs, we have

U= 8(—2¢?% " 12¢% " 1262 " 4  4.32¢°
(V3/2b b V2b  \/3b b

Figure 1.6b shows where each term in this sum comes from. The
energy is positive, indicating that work had to be done on the system
to assemble it. That work could, of course, be recovered if we let the
charges move apart, exerting forces on some external body or bodies.
Or if the electrons were simply to fly apart from this configuration,
the total kinetic energy of all the particles would become equal to U.
This would be true whether they came apart simultaneously and sym-
metrically, or were released one at a time in any order. Here we see
the power of this simple notion of the total potential energy of the
system. Think what the problem would be like if we had to compute
the resultant vector force on every particle at every stage of assembly
of the configuration! In this example, to be sure, the geometrical sym-
metry would simplify that task; even so, it would be more complicated
than the simple calculation above.

One way of writing the instruction for the sum over pairs is this:

(®)

N

v=3> ¥ Ul ©)
j=1 k=j "jk

The double-sum notation, Z}":IE k> says: Take j = 1 and sum over
k=23,4,...,N,thentake j = 2 and sumover k = 1,3,4, ...,
N; and so on, through j = /V. Clearly this includes every pair twice,
and to correct for that we put in front the factor %.

FIGURE 1.6

(a) The potential energy of this arrangement of nine
point charges is given by Eq. 9. (b) Four types of pairs
are involved in the sum.
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FIGURE 1.7

A portion of a sodium chloride crystal, with the ions
Na* and C1~ shown in about the right relative
proportions (&), and replaced by equivalent point
charges (b).

ELECTRICAL ENERGY IN A CRYSTAL LATTICE

1.6 These ideas have an important application in the physics of
crystals. We know that an ionic crystal like sodium chloride can be
described, to a very good approximation, as an arrangement of positive
ions (Na*) and negative ions (Cl7) alternating in a regular three-
dimensional array or lattice. In sodium chloride the arrangement is
that shown in Fig. 1.7a. Of course the ions are not point charges, but
they are nearly spherical distributions of charge and therefore (as we
shall presently prove) the electrical forces they exert on one another
are the same as if each ion were replaced by an equivalent point
charge at its center. We show this electrically equivalent system in
Fig. 1.7b. The electrostatic potential energy of the lattice of charges
plays an important role in the explanation of the stability and cohesion
of the ionic crystal. Let us see if we can estimate its magnitude.

We seem to be faced at once with a sum that is enormous, if not
doubly infinite, for any macroscopic crystal contains 10% atoms at
least. Will the sum converge? Now what we hope to find is the poten-
tial energy per unit volume or mass of crystal. We confidently expect
this to be independent of the size of the crystal, based on the general
argument that one end of a macroscopic crystal can have little influ-
ence on the other. Two grams of sodium chloride ought to have twice
the potential energy of 1 gm, and the shape should not be important
so long as the surface atoms are a small fraction of the total number
of atoms. We would be wrong in this expectation if the crystal were
made out of ions of one sign only. Then, 1 gm of crystal would carry
an enormous electric charge, and putting two such crystals together
to make a 2-gm crystal would take a fantastic amount of energy. (You
might estimate how much!) The situation is saved by the fact that the
crystal structure is an alternation of equal and opposite charges, so
that any macroscopic bit of crystal is very nearly neutral.

To evaluate the potential energy we first observe that every pos-
itive ion is in a position equivalent to that of every other positive ion.
Furthermore, although it is perhaps not immediately obvious from
Fig. 1.7, the arrangement of positive ions around a negative ion is
exactly the same as the arrangement of negative ions around a positive
ion, and so on. Hence we may take one ion as a center, it matters not
which kind, sum over ifs interactions with all the others, and simply
multiply by the total number of ions of both kinds. This reduces the
double sum in Eq. 9, to a single sum and a factor /V; we must still
apply the factor % to compensate for including each pair twice. That
is, the energy of a sodium chloride lattice composed of a total of N
ions is :

U =

N | —

N
NZ 919k (10)
k=2 Tik
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Taking the positive ion at the center as in Fig. 1.7b, our sum runs over
all its neighbors near and far. The leading terms start out as follows:

2 122 82
1 ( 6e e e ) (11

a \/Ea \/§a

The first term comes from the 6 nearest chlorine ions, at distance a,
the second from the 12 sodium ions on the cube edges, and so on. It
is clear, incidentally, that this series does not converge absolutely, if
we were so foolish as to try to sum all the positive terms first, that sum
would diverge. To evaluate such a sum, we should arrange it so that
as we proceed outward, including ever more distant ions, we include
them in groups which represent nearly neutral shells of material. Then
if the sum is broken off, the more remote ions which have been
neglected will be such an even mixture of positive and negative
charges that we can be confident their contribution would have been
small. This is a crude way to describe what is actually a somewhat
more delicate computational problem. The numerical evaluation of
such a series is easily accomplished with a computer. The answer in
this example happens to be

U==<
2

_ —0.8738Né’
- a

(12)

Here N, the number of ions, is twice the number of NaCl molecules.

The negative sign shows that work would have to be dorne to take
the crystal apart into ions. In other words, the electrical energy helps
to explain the cohesion of the crystal. If this were the whole story,
however, the crystal would collapse, for the potential energy of the
charge distribution is obviously lowered by shrinking all the distances.
We meet here again the familiar dilemma of classical—that is, non-
quantum—~physics. No system of stationary particles can be in stable
equilibrium, according to classical laws, under the action of electrical
forces alone. Does this make our analysis useless? Not at all. Remark-
ably, and happily, in the quantum physics of crystals the electrical
potential energy can still be given meaning, and can be computed very
much in the way we have learned here.

THE ELECTRIC FIELD

1.7 Suppose we have some arrangement of charges, qi, ¢, . . . , g,
fixed in space, and we are interested not in the forces they exert on
one another but only in their effect on some other charge g, which
might be brought into their vicinity. We know how to calculate the
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FIGURE 1.8
The field at a point is the vector sum of the fields of
each of the charges in the system.

resultant force on this charge, given its position which we may specify
by the coordinates x, y, z. The force on the charge g is

N -
F, = Z CquéTOj (13)
j=1 Toj
where 1q; is the vector from the jth charge in the system to the point
(x, y, z). The force is proportional to g, so if we divide out gy we
obtain a vector quantity which depends only on the structure of our
original system of charges, gy, . . . , qn, and on the position of the point
(x, y, z). We call this vector function of x, y, z the electric field aris-
ing from the gy, ..., gy and use the symbol E for it. The charges
q1, - - - » gy We call sources of the field. We may take as the definition

of the electric field E of a charge distribution, at the point (x, y, z)

N A
E(x,p,z) = > 420 (14)
j=1 Toj

Figure 1.8 illustrates the vector addition of the field of a point charge
of 2 esu to the field of a point charge of —1 esu, at a particular point
in space. In the CGS system of units, electric field strength is
expressed in dynes per unit charge, that is, dynes/esu.

In ST units with the coulomb as the unit of charge and the new-
ton as the unit of force, the electric field strength E can be expressed
in newtons/coulomb, and Eq. 14 would be written like this:

1 & q;fo;
E=— === (14)
4 () j=1 roj
each distance ro; being measured in meters.

After the introduction of the electric potential in the next chap-
ter, we shall have another, and completely equivalent, way of express-
ing the unit of electric field strength; namely, statvolts/cm in the CGS
system of units and volts/meter in SI units.

So far we have nothing really new. The electric field is merely
another way of describing the system of charges; it does so by giving
the force per unit charge, in magnitude and direction, that an explor-
ing charge g, would experience at any point. We have to be a little
careful with that interpretation. Unless the source charges are really
immovable, the introduction of some finite charge g, may cause the
source charges to shift their positions, so that the field itself, as defined
by Eq. 14, is different. That is why we assumed fixed charges to begin
our discussion. People sometimes define the field by requiring g, to be
an “infinitesimal” test charge, letting E be the limit of F/g, as gy —
0. Any flavor of rigor this may impart is illusory. Remember that in
the real world we have never observed a charge smaller than e!
Actually, if we take Eq. 14 as our definition of E, without reference
to a test charge, no problem arises and the sources need not be fixed.
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ure rotated around the symmetry axis. In Fig. 1.10 there is one point
in space where E is zero. How far from the nearest charge must this
point lie? Notice also that toward the edge of the picture the field
points more or less radially outward all around. One can see that at a
very large distance from the charges the field will look very much like
the field from a positive point charge. This is to be expected because
the separation of the charges cannot make very much difference for
points far away, and a point charge of 2 units is just what we would
have left if we superimposed our two sources at one spot.

Another way to depict a vector field is to draw field lines. These
are simply curves whose tangent, at any point, lies in the direction of
the field at that point. Such curves will be smooth and continuous

FIGURE 1.11 )
Some field lines in the electric field around two

charges, g,

+3,go= —1.
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FIGURE 1.10

The field in the vicinity of two charges, g; = + 3, .
= —1, is the superposition of the fields in Fig. 1.9a
and b.

tion in three-dimensional space. We can indicate the magnitude and
direction of E at various points by drawing little arrows near those
points, making the arrows longer where E is larger.f Using this
scheme, we show in Fig. 1.9a the field of an isolated point charge of
3 units and in Fig. 1.95 the field of a point charge of —1 unit. These
pictures admittedly add nothing whatever to our understanding of the
field of an isolated charge; anyone can imagine a simple radial inverse-
square field without the help of a picture. We show them in order to
combine the two fields in Fig. 1.10, which indicates in the same man-
ner the field of two such charges separated by a distance a. All that
Fig. 1.10 can show is the field in a plane containing the charges. To
get a full three-dimensional representation one must imagine the fig-

tSuch a representation is rather clumsy at best. It is hard to indicate the point in space
to which a particular vector applies, and the range of magnitudes of E is usually so
large that it is impracticable to make the lengths of the arrows proportional to E.
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FIGURE 1.12

Each element of the charge distribution p(x’, y’, Z’)
makes a contribution to the electric field E at this point
(x, v, 2). The total field at this point is the sum of all
such contributions (Eq. 15).

p(xy.2)

(2% G0)

(x.y:2)

except at singularities such as point charges, or points like the one in
the example of Fig. 1.10 where the field is zero. A field line plot does
not directly give the magnitude of the field, although we shall see that,
in a general way, the field lines converge as we approach a region of
strong field and spread apart as we approach a region of weak field.
In Fig. 1.11 are drawn some field lines for the same arrangement of
charges as in Fig. 1.10, a positive charge of 3 units and a negative
charge of 1 unit. Again, we are restricted by the nature of paper and
ink to a two-dimensional section through a three-dimensional bundle
of curves.

CHARGE DISTRIBUTIONS

1.8 This is as good a place as any to generalize from point charges
to continuous charge distributions. A volume distribution of charge is
described by a scalar charge-density function p, which is a function of
position, with the dimensions charge/volume. That is, p times a volume
element gives the amount of charge contained in that volume element.
The same symbol is often used for mass per unit volume, but in this
book we shall always give-charge per unit volume first call on the sym-
bol p. If we write p as a function of the coordinates x, y, z, then p(x,
¥, z) dx dy dz is the charge contained in the little box, of volume dx
dy dz, located at the point (x, y, z).

On an atomic scale, of course, the charge density varies enor-
mously from point to point; even so, it proves to be a useful concept in
that domain. However, we shall use it mainly when we are dealing
with large-scale systems, so large that a volume element dv = dx dy
dz can be quite small relative to the size of our system, although still
large enough to contain many atoms or elementary charges. As we
have remarked before, we face a similar problem in defining the ordi-
nary mass density of a substance.

If the source of the electric field is to be a continuous charge
distribution rather than point charges, we merely replace the sum in
Eq. 14 with the appropriate integral. The integral gives the electric field
at (x, y, z), which is produced by charges at other points (x/, )/, z’).

/ 4 IS 4 / 7
E(x, y, 7) = J'p(x,y,z)rzdx dy’ dz (15)

7

This is a volume integral. Holding (x, y, z) fixed we let the variables

of integration, x’, J’, and z’, range over all space containing charge,
thus summing up the contributions of all the bits of charge. The unit

vector f points from (x’, y/, z’) to (x, y, z)—unless we want to put a.

minus sign before the integral, in which case we may reverse the direc-
tion of f. It is always hard to keep signs straight. Let’s remember that
the electric field points away from a positive source (Fig. 1.12).

In the neighborhood of a true point charge the electric field
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grows infinite like 1/7% as we approach the point. It makes no sense to
talk about the field at the point charge. As our ultimate physical
sources of field are not, we believe, infinite concentrations of charge in
zero volume but instead finite structures, we simply ignore the math-
ematical singularities implied by our point-charge language and rule
out of bounds the interior of our elementary sources. A continuous
charge distribution p (X, y, z’) which is nowhere infinite gives no trou-
ble at all. Equation 15 can be used to find the field at any point within
the distribution. The integrand doesn’t blow up at » = 0 because the
volume element in the numerator is in that limit proportional to 7* dr.
That is to say, so long as p remains finite, the field will remain finite
everywhere, even in the interior or on the boundary of a charge
distribution.

FLUX

1.9 The relation between the electric field and its sources can be
expressed in a remarkably simple way, one that we shall find very use-
ful. For this we need to define a quantity called flux.

Consider some electric field in space and in this space some arbi-
trary closed surface, like a balloon of any shape. Figure 1.13 shows
such a surface, the field being suggested by a few field lines. Now
divide the whole surface into little patches which are so small that over
any one patch the surface is practically flat and the vector field does
not change appreciably from one part of a patch to another. In other
words, don’t let the balloon be too crinkly, and don’t let its surface
pass right through a singularityf of the field such as a point charge.
The area of a patch has a certain magnitude in cm? and a patch
defines a unique direction—the outward-pointing normal to its sur-
face. (Since the surface is closed, you can tell its inside from its out-
side; there is no ambiguity.) Let this magnitude and direction be rep-
resented by a vector. Then for every patch into which the surface has
been divided, such as patch number j, we have a vector a; giving its
area and orientation. The steps we have just taken are pictured in Fig.
1.13b and c. Note that the vector a; does not depend at all on the shape
of the patch; it doesn’t matter how we have divided up the surface, as
long as the patches are small enough.

Let E; be the electric field vector at the location of patch number
J. The scalar product E; - a; is a number. We call this number the
flux through that bit of surface. To understand the origin of the name,

1By a singularity of the field we would ordinarily mean not only a point source where
the field approaches infinity, but any place where the field changes magnitude or direc-
tion discontinuously, such as an infinitesimally thin layer of concentrated charge.
Actually this latter, milder, kind of singularity would cause no difficulty here unless
our balloon’s surface were to coincide with the surface of discontinuity over some finite
area.

FIGURE 1.13

(a) A closed surface in a vector field is divided (b) into
small elements of area. (c) Each element of area is
represented by an outward vector.
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FIGURE 1.14

The flux through the frame of area ais v - a, where v
is the velocity of ‘the fluid. The flux is the volume of fluid
passing through the frame, per unit time.

imagine a vector function which represents the velocity of motion in a
fluid—say in a river, where the velocity varies from one place to

another but is constant in time at any one position. Denote this vector
field by v, measured, say, in meters/sec. Then, if a is the oriented area
in square meters of a frame lowered into the water, v - a is the rate
of flow of water through the frame in cubic meters per second (Fig.
1.14). We must emphasize that our definition of flux is applicable to
any vector function, whatever physical variable it may represent.

Now let us add up the flux through all the patches to get the
flux through the entire surface, a scalar quantity which we shall
denote by &:

d=>E - a (16)
All j

Letting the patches become smaller and more numerous without limit,
we pass from the sum in Eq. 16 to a surface integral:

3 = fﬁ.,ﬁ,e E - da 17)

surface

A surface integral of any vector function F, over a surface .S, means
just this: Divide S into small patches, each represented by-a vector
outward, of magnitude equal to the patch area; at every patch, take
the scalar product of the patch area vector and the local F; sum all
these products, and the limit of this sum, as the patches shrink, is the
surface integral. Do not be alarmed by the prospect of having to per-
form such a calculation for an awkwardly shaped surface like the one
in Fig. 1.13. The surprising property we are about to demonstrate
makes that unnecessary!

GAUSS’S LAW
1.10 Take the simplest case imaginable; suppose the field is that of
a single isolated positive point charge ¢ and the surface is a sphere of
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radius r centered on the point charge (Fig. 1.15). What is the flux &
through this surface? The answer is easy because the magnitude of E
at every point on the surface is ¢/r* and its direction is the same as
that of the outward normal at that point. So we have

® = E X total area = r% X dnrt = 4wq (18)

The flux is independent of the size of the sphere.

Now imagine a second surface, or balloon, enclosing the first,
but not spherical, as in Fig. 1.16. We claim that the total flux through
this surface is the same as that through the sphere. To see this, look
at a cone, radiating from ¢, which cuts a small patch a out of the
sphere and continues on to the outer surface where it cuts out a patch
A at a distance R from the point charge. The area of the patch A is
larger than that of the patch a by two factors: first, by the ratio of the
distance squared (R/r)% and second, owing to its inclination, by the
factor 1//cos 0. The angle 6 is the angle between the outward normal
and the radial direction (see Fig. 1.16). The electric field in that neigh-
borhood is reduced from its magnitude on the sphere by the factor
(r/R)? and is still radially directed. Letting E gy be the field at the
outer patch and E, be the field at the sphere, we have

Flux through outer patch = E) - A = Egyd cos§  (19)
Flux through inner patch = E,) - a = E(,a

2 2
R 1
E(R)A cosf = [E(,) <";> :||:a <‘r‘> - 0:| cos f = E(v,)a

This proves that the flux through the two patches is the same.

Now every patch on the outer surface can in this way be put into
correspondence with part of the spherical surface, so the total flux
must be the same through the two surfaces. That is, the flux through
the new surface must be just 4wg. But this was a surface of arbitrary
shape and size.t We conclude: The flux of the electric field through
any surface enclosing a point charge g is 4wq. As a corollary we-can
say that the total flux through a closed surface is zero if the charge
lies outside the surface. We leave the proof of this to the reader, along
with Fig. 1.17 as a hint of one possible line of argument.

There is a way of looking at all this which makes the result seem
obvious. Imagine at g a source which emits particles—such as bullets
or photons—in-all directions at a steady.rate. Clearly the flux of par-
ticles through a window of unit area will fall off with the. inverse
square-of the window’s distance from g. Hence we can draw an anal-
ogy between the electric field strength E and the intensity of particle

1To be sure, we had the second-surface enclosing the sphere, but it didn’t have to,
really. Besides, the-sphere-can be taken as-small as. we please.

FIGURE 1.15
In the field E of a point charge g, what is the outward
flux over a sphere surrounding q?

FIGURE 1.16
Showing that the flux.through any: closed surface
ground: g is the same as the flux through the sphere.
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FIGURE 1.17
To show that the flux through the closed surface in (a)
is zero, you can make use of (b).

flow in bullets per unit area per unit time. It is pretty obvious that the
flux of bullets through any surface completely surrouding g is inde-
pendent of the size and shape of that surface, for it is just the total
number emitted per unit time. Correspondingly, the flux of E through
the closed surface must be independent of size and shape. The com-
mon feature responsible for this is the inverse-square behavior of the
intensity. .
The situation is now ripe for superposition! Any electric field is
the sum of the fields of its individual sources. This property was
expressed in our statement, Eq. 13, of Coulomb’s law. Clearly flux is
an additive quantity in the same sense, for if we have a number of
sources, qi, qa, - - - 5 4, the fields of which, if each were present alone,
would be E;, E,. .., Ey, the flux ® through some surface S in the
actual field can be written

<I>=J-Eda=J-S(E1+E2++EN)da (20)
N

We have just learned that J- E, - da equals 4wq, if the charge
S

g, is inside S and equals zero otherwise. So every charge g inside the
surface contributes exactly 4rg to the surface integral of Eq. 20 and
all charges outside contribute nothing. We have arrived at Gauss’s
law:

The flux of the electric field E through any closed

surface, that is, the integral J. E - da over the sur-

face, equals 47 times the total charge enclosed by

the surface:
(21)

J-E-da=4qui=4wfpdv

We call the statement in the box a /aw because it is equivalent
to Coulomb’s law and it could serve equally well as the basic law of
electrostatic interactions, after charge and field have been defined.
Gauss’s law and Coulomb’s law are not two independent physical laws,
but the same law expressed in different ways.

tThere is one difference, inconsequential here, but relevant to our later study of the
fields of moving charges. Gauss’ law is obeyed by a wider class of fields than those
represented by the electrostatic field. In particular, a field that is inverse-square in r
but not spherically symmetrical can satisfy Gauss’ law. In other words, Gauss’ law
alone does not imply the symmetry of the field of a point source which is implicit in
Coulomb’s law.
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Looking back over our proof, we see that it hinged on the
inverse-square nature of the interaction and of course on the additivity
of interactions, or superposition. Thus the theorem is applicable to any
inverse-square field in physics, for instance, to the gravitational field.

It is easy to see that Gauss’s law would not hold if the law of
force were, say, inverse-cube. For in that case the flux of electric field
from a point charge g through a sphere of radius R centered on the
charge would be

q>=fE-da=i-4wR2=ﬂ (22)

R R
By making the sphere large enough we could make the flux through
it as small as we pleased, while the total charge inside remained
constant.

This remarkable theorem enlarges our grasp in two ways. First,

it reveals a connection between the field and its sources that is the
converse of Coulomb’s law. Coulomb’s law tells us how to derive the
electric field if the charges are given; with Gauss’s law we can deter-
mine how much charge is in any region if the field is known. Second,
the mathematical relation here demonstrated is a powerful analytic
tool; it can make complicated problems easy, as we shall see.

FIELD OF A SPHERICAL CHARGE DISTRIBUTION

1.11 We can use Gauss’s law to find the electric field of a spheri-
cally symmetrical distribution of charge, that is, a distribution in
which the charge density p depends only on the radius from a central
point. Figure 1.18 depicts a cross section through some such distri-
bution. Here the charge density is high at the center, and is zero
beyond r,. What is the electric field at some point such as P; outside
the distribution, or P, inside it (Fig. 1.19)? If we could proceed only
from Coulomb’s law, we should have to carry out an integration which
would sum the electric field vectors at P, arising from each elementary
volume in the charge distribution. Let’s try a different approach which
exploits both the symmetry of the system and Gauss’s law.

Because of the spherical symmetry, the electric field at any point
must be radially directed—no other direction is unique. Likewise, the
field magnitude E must be the same at all points on a spherical surface
S of radius ry, for all such points are equivalent. Call this field mag-
nitude E,. The flux through this surface S is therefore simply 4 riE,,
and by Gauss’s law this must be equal to 4= times the charge enclosed
by the surface. That is, 47?E; = 4= (charge inside S;) or

charge inside .S

E,=—"—7—"7" (23)
r

FIGURE 1.18
A charge distribution with spherical symmetry.

FIGURE 1.19
The electric field of a spherical charge distribution.
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E=0
inside

FIGURE 1.20

The field is zero inside a spherical shell of charge.

Comparing this with the field of a point charge, we see that the
field at all points on S, is the same as if all the charge within S| were
concentrated at the center. The same statement applies to a sphere
drawn inside the charge distribution. The field at any point on S, is
the same as if all charge within S, were at the center, and all charge
outside S, absent. Evidently the field inside a “hollow” spherical
charge distribution is zero (Fig. 1.20).

The same argument applied to the gravitational field would tell
us that the earth, assuming it is spherically symmetrical in its mass
distribution, attracts outside bodies as if its mass were concentrated
at the center. That is a rather familiar statement. Anyone who is
inclined to think the principle expresses an obvious property of the
center of mass must be reminded that the theorem is not even true, in
general, for other shapes. A perfect cube of uniform density does not
attract external bodies as if its mass were concentrated at its geomet-
rical center.

Newton didn’t consider the theorem obvious. He needed it as the
keystone of his demonstration that the moon in its orbit around the
earth and a falling body on the earth are responding to similar forces.
The delay of nearly 20 years in the publication of Newton’s theory of
gravitation was apparently due, in part at least, to the trouble he had
in proving this theorem to his satisfaction. The proof he eventually
devised and published in the Principia in 1686 (Book I, Section XII,
Theorem XXXI) is a marvel of ingenuity in which, roughly speaking,
a tricky volume integration is effected without the aid of the integral
calculus as we know it. The proof is a good bit longer than our whole
preceding discussion of Gauss’s law, and more intricately reasoned.
You see, with all his mathematical resourcefulness and originality,
Newton lacked ‘Gauss’s theorem—a relation which, once it has been
shown to us, seems so obvious as to be almost trivial.

FIELD OF A LINE CHARGE

1.12 A long, straight,:charged wire, if we neglect its thickness, can
be characterized by the amount of charge it carries per unit length.
Let A, measured in esu/cm, denote this linear charge density. What is
the electric field of such a line charge, assumed infinitely long and with
constant linear charge density A? We’ll do the problem in two ways,
first by an integration starting from Coulomb’s law.

To evaluate the field at the point P, shown in Fig. 1.21, we must
add up the contributions fromall segments of the line charge, one of
which is indicated as a segment of length dx. The charge dq on this
element is given by dg = A dx. Having oriented our x axis along the
line charge, we may as well let the y axis pass through P, which is
cm from the nearest point on the line. It is a good idea to'take advan-
tage of synimetry at the outset. Obviously the electric field at P must
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point in the y direction, so that E, and E, are both zero. The contri-
bution of the charge dq to the y component of the electric field at P
is

A dx
dE, = R2 008 0= RE 08 0 (24)

where 6 is the angle the vector field of dg makes with the y direction.
The total y component is then

“ X cos 6

E = dey - f 2O dx (25)
—» R

It is convenient to use f as the variable of integration. Since R =

rfcos 6 and dx = R df/cos 0, the integral becomes

- cos § df =

—/2 r rJ-zp

E, = (26)

f*ﬂ AcosOdf N [ 2

B r

We see that the field of an infinitely long, uniformly dense line charge

is proportional to the reciprocal of the distance from the line. Its direc-

tion is of course radially outward if the line carries a positive charge,
inward if negative.

Gauss’ law leads directly to the same result. Surround a segment

FIGURE 1.21
(a) Thefield at P is the vector sum.of contributions
from each element of the line charge. (b) Detail of (a).
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FIGURE 1.22

Using Gauss’ law to find the field of a line charge.

of the line charge with a closed circular cylinder of length L and radius
r, as in Fig. 1.22, and consider the flux through this surface. As we
have already noted, symmetry guarantees that the field is radial, so
the flux through the ends of the “tin can” is zero. The flux through
the cylindrical surface is simply the area, 2zrL, times E,, the field at
the surface. On the other hand, the charge enclosed by the surface is
just AL, so Gauss’s law gives us 2arLE, = 4w\L or

. 2
.

E, (27)

in agreement with Eq. 26.

FIELD OF AN INFINITE FLAT SHEET OF CHARGE

1.13 Electric charge distributed smoothly in a thin sheet is called
a surface charge distribution. Consider a flat sheet infinite in extent,
with the constant surface charge density ¢. The electric field on either
side of the sheet, whatever its magnitude may turn out to be, must
surely point perpendicular to the plane of the sheet; there is no other
unique direction in the system. Also because of symmetry, the field
must have the same magnitude and the opposite direction at two
points P and P’ equidistant from the sheet on opposite sides. With
these facts established, Gauss’s law gives us at once the field intensity,
as follows: Draw a cylinder, as in Fig. 1.23, with P on one side and P’
on the other, of cross-section area 4. The outward flux is found only
at the ends, so that if Ep denotes the magnitude of the field at P, and
Ep, the magnitude of P’, the outward flux is AEp + AEp = 2AEp.
The charge enclosed is 4. Hence 24Ep = 4w A, or

Ep = 2wo (28)

We see that the field strength is independent of 7, the distance from
the sheet. Equation 28 could have been derived more laboriously by
calculating the vector sum of the contributions to the field at P from
all the little elements of charge in the sheet.

The field of an infinitely long line charge, we found, varies
inversely as the distance from the line, while the field of an infinite
sheet has the same strength at all distances. These are simple conse-
quences of the fact that the field of a point charge varies as the inverse
square of the distance. If that doesn’t yet seem compellingly obvious,
look at it this way: Roughly speaking, the part of the line charge that
is mainly responsible for the field at P, in Fig. 1.21, is the near part—
the charge within a distance of order of magnitude r. If we lump all
this together and forget the rest, we have a concentrated charge of
magnitude ¢ = Ar, which ought to produce a field proportional to
q/ r2, or A/r. In the case of the sheet, the amount of charge that is
“effective,” in this sense, increases proportionally to r* as we go out
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from the sheet, which just offsets the 1/r* decrease in the field from
any given element of charge.

THE FORCE ON A LAYER OF CHARGE

1.14 The sphere in Fig. 1.24 has a charge distributed over its sur-
face with the uniform density o, in esu/ cm?. Inside the sphere, as we
have already learned, the electric field of such a charge distribution is
zero. Outside the sphere the field is Q/r%, where Q is the total charge
on the sphere, equal to 47r§o. Just outside the surface of the sphere
the field strength is 4wg. Compare this with Eq. 28 and Fig. 1.23. In
both cases Gauss’ law is obeyed: The change in E, from one side of
the layer to the other, is equal to 4wo.

What is the electrical force experienced by the charges that
make up this distribution? The question may seem puzzling at first
because the field E arises from these very charges. What we must
think about is the force on some small element of charge dg, such as
a small patch of area dA4 with charge dg = o dA. Consider, sepa-
rately, the force on dg due to all the other charges in the distribution,

FIGURE 1.23
Using Gauss’ law to find the field of an infinite flat sheet

of charge.

FIGURE 1.24
A spherical surface with uniform charge density ¢.
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FIGURE 1.25
The net change in-field at a charge layer depends only
on the total charge per unit area.

and the force on the patch due to the charges within the patch itself.
This latter force is surely zero. Coulomb repulsion between charges
within the patch is just another example of Newton’s third law; the
patch as a whole cannot push on itself. That simplifies our problem,
for it allows us to use the entire €lectric field E, including the field due
to all charges in the patch, in calculating the force dF on the patch of
charge dg:

dF = Edqg =EodA (29)

But what E shall we use, the field £ = 4w outside the sphere or the
field E = 0inside? The correct answer, as we shall prove i in a moment,
is the average of the two fields.

dF = %(4wo + 0) 0 dA = 2we* dA (30)

To justify this we shall consider a more general case, and one
that will introduce a more realistic picture of a layer of surface charge.
Real charge layers do not have zero thickness. Figure 1.25 shows some
ways in which charge might be distributed through the thickness of a
layer. In each example the value of ¢, the total charge per unit area
of layer, is the same. These might be cross sections through a small
portion of the spherical surface in Fig. 1.24 on a scale such that the
curvature is not noticeable. To make it more general, however, we
have let the field on the left be E, (rather than 0, as it was inside the
sphere), with E, the field strength on the right. The condition imposed
by Gauss’s law, for given o, is in each case

E2 - E] = 4ro (31)

Now let us look carefully within the layer where the field is
changing continuously from E; to E, and there is a volume charge
density p(x) extending from x = 0 to x = X, the thickness of the
layer (Fig. 1.26). Consider a much thinner slab, of thickness dx < x,,
which contains per unit area an amount of charge p dx. The force on
it is

dF = Ep dx (32)

Thus the total force per unit area of our charge layer is
X0
F= f Ep dx (33)
0

But Gauss’s law tells us that dE, the change in E through the thin
slab, is just 4wp dx. Hence p dx in Eq. 33 can be replaced by dE/ 47r,
and the integral becomes
1 ™ 1
=— | EdE=—(E}—-E) (34)
&

v Ey,



.ELECTROSTATICS: CHARGES AND FIELDS

31

Since E, — E| = 4o, the result in Eq. 34, after being factored, can
be expressed as

F = WE, + E)o (35)

We have shown, as promised, that for given o the force per unit area
on a charge layer is determined by the mean of the external field on
one side and that on the other.T This is independent of the thickness
of the layer, as long as it is small compared to the total area, and of
the variation p(x) in charge density within the layer.

The direction of the electrical force on an element of the charge
on the sphere is, of course, outward whether the surface charge is pos-
itive or negative. If the charges do not fly off the sphere, that outward
force must be balanced by some inward force, not included in our
equations, which can hold the charge carriers in place. To call such a
force “nonelectrical” would be misleading, for electrical attractions
and repulsions are the dominant forces in the structure of atoms and
in the cohesion of matter generally. The difference is that these forces
are effective only at short distances, from atom to atom, or from elec-
tron to electron. Physics on that scale is a story of individual particles.
Think of a charged rubber balloon, say, 10 cm in radius, with 20 esu
of negative charge spread as uniformly as possible on its outer surface.
It forms a surface charge of density ¢ = 20/4007 = 0.016 esu/cm?
The resulting outward force, per cm? of surface charge, is
2ma?, or 0.0016 dynes/cm? In fact our charge consists of about 4 X
10'° electrons attached to the rubber film. As there are about 30 mil-
lion extra electrons per cm?, “graininess” in the charge distribution is
hardly apparent. However, if we could look at one of these extra elec-
trons, we would find it roughly 10™* cm—an enormous distance on an
atomic scale—from its nearest neighbor. This electron would be stuck,
electrically stuck, to a local molecule of rubber. The rubber molecule
would be attached to adjacent rubber molecules, and so on. If you pull
on the electron, the force is transmitted in this way to the whole piece
of rubber. Unless, of course, you pull hard enough to tear the electron
loose from the molecule to which it is attached. That would take an
electric field many thousands of times stronger than the field in our
example.

ENERGY ASSOCIATED WITH THE ELECTRIC FIELD

1.15 Suppose our spherical shell of charge is compressed slightly,
from an initial radius of ry to a smaller radius, as in Fig. 1.27. This
requires that work be done against the repulsive force, 2ra” dynes for

TNote that this is not necessarily the same as the average field within the layer, a
quantity of no special interest or significance.

FIGURE 1.26
Within the charge layer of density p(x), E(x + dx) —
E(x) = 4mp dx.

FIGURE 1.27
Shrinking a spherical shell or charged balloon.
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each square centimeter of surface. The displacement being dr, the
total work done is (4773 )(2wa? ) dr, or 87*r3o” dr. This represents an
increase in the energy required to assemble the system of charges, the
energy U we talked about in Section 1.5:

dU = 8x%rie? dr (36)

Notice how the electric field £ has been changed. Within the shell of
thickness dr the field was zero and is now 4w¢. Beyond r, the field is
unchanged. In effect we have created a field of strength £ = 4n¢
filling a region of volume 477§ dr. We have done so by investing an
amount of energy given by Eq. 36 which, if we substitute E/4n for
g, can be written like this:

E2
dU = = 4xr dr (37)

8w
This is an instance of a general theorem which we shall not prove
now: The potential energy U of a system of charges, which is the total
work required to assemble the system, can be calculated from the elec-
tric field itself simply by assigning an amount of energy (E*/8w) dv
to every volume element dv and integrating over all space where there

is electric field.

_ 1 2
U B 87(’ jEntireE dU (38)

field

E? is a scalar quantity, of course: E2=E - E.

One may think of this energy as “stored” in the field. The system
being conservative, that amount of energy can of course be recovered
by allowing the charges to go apart; so it is nice to think of the energy
as “being somewhere” meanwhile. Our accounting comes out right if
we think of it as stored in space with a density of E?/8, in ergs/cm’.
There is no harm in this, but in fact we have no way of identifying,
quite independently of anything else, the energy stored in a particular
cubic centimeter of space. Only the total energy is physically measur-
able, that is, the work required to bring the charge into some config-
uration, starting from some other configuration. Just as the concept of
electric field serves in place of Coulomb’s law to explain the behavior
of electric charges, so when we use Eq. 38 rather than Eq. 9 to express
the total potential energy of an electrostatic system, we are merely
using a different kind of bookkeeping. Sometimes a change in view-
point, even if it is at first only a change in bookkeeping, can stimulate
new ideas and deeper understanding. The notion of the electric field
as an independent entity will take form when we study the dynamical
behavior of charged matter and electromagnetic radiation.



ELECTROSTATICS: CHARGES AND FIELDS

33

We run into trouble if we try to apply Eq. 38 to a system that
contains a point charge, that is, a finite charge g of zero size. Locate
q at the origin of the coordinates. Close to the origin E? will approach
¢*/r*. With dv = 4xr? dr, the integrand E* dv will behave like dr/
7%, and our integral will blow up at the limit » = 0. That simply tells
us that it would take infinite energy to pack finite charge into zero
volume—which is true but not helpful. In the real world we deal with
particles like electrons and protons. They are so small that for most
purposes we can ignore their dimensions and think of them as point
charges when we consider their electrical interaction with one another.
How much energy it took to make such a particle is a question that
goes beyond the range of classical electromagnetism. We have to
regard the particles as supplied to us ready-made. The energy we are
concerned with is the work done in moving them around.

The distinction is usually clear. Consider two charged particles,
a proton and a negative pion, for instance. Let E, be the electric field
of the proton, E, that of the pion. The total fieldis E = E, + E,,
and E - Eis E; + EZ + 2E, - E,. According to Eq. 38 the total
energy in the electric field of this two-particle system is

1
U=—fE2dv
8T (39)
=L Ezdv+~l—J-E2d +LJE-Ed
8 P 87 - v 4 4 = v

The value of the first integral is a property of any isolated proton. It
is a constant of nature which is not changed by moving the proton
around. The same goes for the second integral, involving the pion’s
electric field alone. It is the third integral that directly concerns us,
for it expresses the energy required to assemble the system given a
proton and a pion as constituents.

The distinction could break down if the two particles interact so
strongly that the electrical structure of one is distorted by the presence
of the other. Knowing that both particles are in a sense composite (the
proton consisting of three quarks, the pion of two), we might expect
that to happen during a close approach. In fact, nothing much hap-
pens down to a distance of 10~'% cm. At shorter distances, for strongly
interacting particles like the proton and the pion, nonelectrical forces
dominate the scene anyway.

That explains why we do not need to include “self-energy” terms
like the first two integrals in Eq. 39 in our energy accounts for a sys-
tem of elementary charged particles. Indeed, we want to omit them.
We are doing just that, in effect, when we replace the actual distri-
bution of discrete elementary charges (the electrons on the rubber bal-
loon) by a perfectly continuous charge distribution.
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PROBLEM 1.3

PROBLEMS

1.1 In the domain of elementary particles, a natural unit of mass is
the mass of a nucleon, that is, a proton or a neutron, the basic massive
building blocks of ordinary matter. Given the nucleon mass as 1.6 X
107 gm and the gravitational constant G as 6.7 X 107% cm®/gm-
sec?, compare the gravitational attraction of two protons with their
electrostatic repulsion. This shows why we call gravitation a very weak
force. The distance between the two protons in the helium nucleus
could be at one instant as much as 10™** cm. How large is the force
of electrical repulsion between two protons at that distance? Express
it in newtons, and in pounds. Even stronger is the nuclear force that
acts between any pair of hadrons (including neutrons and protons)
when they are that close together.

1.2 On the utterly unrealistic assumption that there are no other
charged particles in the vicinity, at what distance below a proton
would the upward force on an electron (electron mass =~ 1072’ gm)
equal the electron’s weight?

1.3 Two volley balls, mass 0.3 kilogram (kg) each, tethered by
nylon strings and charged with an electrostatic generator, hang as
shown in the diagram. What is the charge on each in coulombs,
assuming the charges are equal? (Reminder: the weight of a 1-kg
mass on earth is 9.8 newtons, just as the weight of a 1-gm mass is 980
dynes.)

@ At each corner of a square is a particle with charge ¢. Fixed at
the center of the square is a point charge of opposite sign, of magni-
tude Q. What value must Q have to make the total force on each of
the four particles zero? With Q set at that value, the system, in the
absence of other forces, is in equilibrium. Do you think the equilib-

rium is stable?
Ans. Q = 0.957q.

1.5 A thin plastic rod bent into a semicircle of radius R has a
charge of Q, in esu, distributed uniformly over its length. Find the
strength of the electric field at the center of the semicircle.

1.6 Three positive charges, A, B, and C, of 3 X 1075, 2 X 107,
and 2 X 107 coulombs, respectively, are located at the corners of an
equilateral triangle of side 0.2 meter.
(a) Find the magnitude in newtons of the force on each charge.
() Find the magnitude in newtons/coulomb of the electric field
at the center of the triangle.
Ans. (a) 2.34 newtons on A, 1.96 newtons on B and C;
(b) 6.74 X 10° newtons/coulomb.
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1.7 Find a geometrical arrangement of one proton and two elec-
trons such that the potential energy of the system is exactly zero. How
many such arrangements are there with the three particles on the
same straight line?

1.8 Calculate the potential energy, per ion, for an infinite one-
dimensional ionic crystal, that is, a row of equally spaced charges of
magnitude e and alternating sign. [Hint: The power-series expansion
of In (1 + x) may be of use.]

1.9 A spherical volume of radius a is filled with charge of uniform
density p. We want to know the potential energy U of this sphere of
charge, that is, the work done in assembling it. Calculate it by building
the sphere up layer by layer, making use of the fact that the field
outside a spherical distribution of charge is the same as if all the
charge were at the center. Express the result in terms of the total
charge Q in the sphere.

Ans. U = %(Q%/ a).

1.10 At the beginning of the century the idea that the rest mass of
the electron might have a purely electrical origin was very attractive,
especially when the equivalence of energy and mass was revealed by
special relativity. Imagine the cjectron as a ball of charge, of constant
volume density out to some maximum radius 7,. Using the result of
Problem 1.9, set the potential energy of this system equal to mc® and
see what you get for ry. One defect of the model is rather obvious:
Nothing is provided to hold the charge together!

1.11 A charge of 1 esu is at the origin. A charge of —2 esu is at x
= 1 on the x axis.
(a) Find a point on the x axis where the electric field is zero.
(b) Locate, at least approximately, a point on the y axis where
the electric field is parallel to the x axis. [A calculator should help
with (b).]

1.12 Another problem for your calculator: Two positive ions and
one negative ion are fixed at the vertices of an equilateral triangle.
Where can a fourth ion be placed so that the force on it will be zero?
Is there more than one such place?

1.13 The passage of a thundercloud overhead caused the vertical
electric field strength in the atmosphere, measured at the ground, to
rise to 0.1 statvolt/cm.

(a) How much charge did the thundercloud contain, in esu per
cm? of horizontal area?

(b) Suppose there was enough water in the thundercloud in the
form of 1-millimeter (mm)-diameter drops to make 0.25 cm of rain-
fall, and that it was those drops which carried the charge. How large
was the electric field strength at the surface of one of the drops?
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B
PROBLEM 1.16

PROBLEM 1.19

1.14 A charge Q is distributed uniformly around a thin ring of
radius b which lies in the xy plane with its center at the origin. Locate
the point on the positive z axis where the electric field is strongest.

1.15 Consider a spherical charge distribution which has a constant
density p from » = 0 out to » = a and is zero beyond. Find the electric
field for all values of r, both less than and greater than a. Is there a
discontinuous change in the field as we pass the surface of the charge
distribution at » = q? Is there a discontinuous change at » = 0?

1.16 The sphere of radius a was filled with positive charge at uni-
form density p. Then a smaller sphere of radius a/2 was carved out,
as shown in the figure, and left empty. What are the direction and
magnitude of the electric field at 4?7 At B?

1.17 (a) A point charge q is located at the center of a cube of edge

length d. What is the value of J- E - da over one face of the cube?

(b) The charge g is moved to one corner of the cube. What is
now the value of the flux of E through each of the faces of the cube?

1.18 Two infinite plane sheets of surface charge, of density ¢ = 6
esu/cm*and o = —4 esu/cm?, are located 2 cm apart, parallel to one
another. Discuss the electric field of this system. Now suppose the two
planes, instead of being parallel, intersect at right angles. Show what
the field is like in each of the four regions into which space is thereby
divided.

1.19 An infinite plane has a uniform surface charge distribution ¢
on its surface. Adjacent to it is an infinite parallel layer of charge of
thickness d and uniform volume charge density p. All charges are
fixed. Find E everywhere.

1.20 Consider a distribution of charge in the form of a circular cyl-
inder, like a long charged pipe. Prove that the field inside the pipe is
zero. Prove that the field outside is the same as if the charge were all
on the axis. Is either statement true for a pipe of square cross section
on which the charge is distributed with uniform surface density?

1.21 The neutral hydrogen atom in its normal state behaves in
some respects like an electric charge distribution which consists of a
point charge of magnitude e surrounded by a distribution of negative
charge whose density is given by —p(r) = Ce /%, Here a, is the
Bohr radius, 0.53 X 107% c¢m, and C is a constant with the value
required to make the total amount of negative charge exactly e. What
is the net electric charge inside a sphere of radius a,? What is the
electric field strength at this distance from the nucleus?

1.22 Consider three plane charged sheets, A, B, and C. The sheets
are parallel with B below A and C below B. On each sheet there is
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surface charge of uniform density: —4 esu/cm? on A, 7 esu/cm? on
B, and —3 esu/cm’ on C. (The density given includes charge on both
sides of the sheet.) What is the magnitude of the electrical force on
each sheet, in dynes/cm?? Check to see that the total force on the
three sheets is zero.

Ans. 32 dynes/cm? on A; 147 dynes/cm?®on B; 187 dynes/cm?on C.

1.23 A sphere of radius R has a charge Q distributed uniformly
over its surface. How large a sphere contains 90 percent of the energy
stored in the electrostatic field of this charge distribution?

Ans. Radius: 10R.

@ A thin rod 10 cm long carries a total charge of 8 esu uniformly
distributed along its length. Find the strength of the electric field at
each of the two points A and B located as shown in the diagram.

1.25 The relation in Eq. 27 expressed in SI units becomes

1 2\
E=—=—
4mey r

with 7 in meters, A in coulombs/meter, and E in newtons/coulomb.
Consider a high-voltage direct current power line which consists of
two parallel conductors suspended 3 meters apart. The lines are oppo-
sitely charged. If the electric field strength halfway between them is
15,000 newtons/coulomb, how much excess positive charge resides on
a 1-km length of the positive conductor?

Ans. 6.26 X 107 coulomb.

1.26 Two long, thin parallel rods, a distance 2b apart, are joined
by a semicircular piece of radius b, as shown. Charge of uniform linear
density A is deposited along the whole filament. Show that the field E
of this charge distribution vanishes at the point C. Do this by com-
paring the contribution of the element at A4 to that of the element at
B which is defined by the same values of 6 and d#.

1.27 An infinite chessboard with squares of side s has a charge e
at the center of every white square and a charge —e at the center of
every black square. We are interested in the work W required to trans-
port one charge from its position on the board to an infinite distance
from the board, along a path perpendicular to the plane of the board.
Given that W is finite (which is plausible but not so easy to prove), do
you think it is positive or negative? To calculate an approximate value
for W, consider removing the charge from the central square of a 7 X
7 board. (Only 9 different terms are involved in that sum.) Or write a
program and compute the work to remove the central charge from a
much larger array, for instance a 101 X 101 board. Comparing the
result for the 101 X 101 board with that for a 99 X 99 board, and
for a 103 X 103 board, should give some idea of the rate of conver-
gence toward the value for the infinite array.

PROBLEM 1.24

PROBLEM 1.26
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PROBLEM 1.29

1.28 Three protons and three electrons are to be placed at the ver-
tices of a regular octahedron of edge length a. We want to find the
energy of the system, that is, the work required to assemble it starting
with the particles very far apart. There are two essentially different

arrangements. What is the energy of each?
Ans. —3.879¢*/a; —2.1216%/a.

1.29 The figure shows a spherical shell of charge, of radius @ and
surface density o, from which a small circular piece of radius b < a
has been removed. What is the direction and magnitude of the field
at the midpoint of the aperture? There are two ways to get the answer.
You can integrate over the remaining charge distribution to sum the
contributions of all elements to the field at the point in question. Or,
remembering the superposition principle, you can think about the
effect of replacing the piece removed, which itself is practically a little
disk. Note the connection of this result with our discussion of the force
on a surface charge—perhaps that is a third way in which you might
arrive at the answer. '

1.30 Concentric spherical shells of radius a and b, with b > a,
carry charge Q and — Q, respectively, each charge uniformly distrib-
uted. Find the energy stored in the electric field of this system.

1.31 Like the charged rubber balloon described on page 31, a
charged soap bubble experiences an outward electrical force on every
bit of its surface. Given the total charge Q on a bubble of radius R,
what is the magnitude of the resultant force tending to pull any hem-
ispherical half of the bubble away from the other half? (Should this
force divided by 27 R exceed the surface tension of the soap film inter-

esting behavior might be expected!)
Ans. Q*/8R*.

1.32 Suppose three positively charged particles are constrained to
move on a fixed circular track. If the charges were all equal, an equi-
librium arrangement would obviously be a symmetrical one with the
particles spaced 120° apart around the circle. Suppose that two of the
charges are equal and the equilibrium arrangement is such that these
two charges are 90° apart rather than 120°. What is the relative mag-

nitude of the third charge?
Ans. 3.154.

1.33 Imagine a sphere of radius a filled with negative charge of
uniform density, the total charge being equivalent to that of two elec-
trons. Imbed in this jelly of negative charge two protons and assume
that in spite of their presence the negative charge distribution remains
uniform. Where must the protons be located so that the force on each
of them is zero? (This is a surprisingly realistic caricature of a hydro-
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gen molecule; the magic that keeps the electron cloud in the molecule
from collapsing around the protons is explained by quantum
mechanics!)

1.34 Four positively charged bodies, two with charge Q and two
with charge g, are connected by four unstretchable strings of equal
length. In the absence of external forces they assume the equilibrium
configuration shown in the diagram. Show that tan® 6 = ¢?/ Q% This
can be done in two ways. You could show that this relation must hold
if the total force on each body, the vector sum of string tension and
electrical repulsion, is zero. Or you could write out the expression for
the energy U of the assembly (like Eq. 7 but for four charges instead
of three) and minimize it.

1.35 Consider the electric field of two protons b cm apart. Accord-
ing to Eq. 1.38 (which we stated but did not prove) the potential
energy of the system ought to be given by

U='_1" Esz=LJ(E1+E2)2dU
87 8w

1 1
ifE%dv-F——fE%dv-k—fE-E;du
87 8 : 47

where E,; is the field of one particle alone and E, that of the other.
The first of the three integrals on the right might be called the “elec-
trical self-energy” of one proton; an intrinsic property of the particle,
it depends on the proton’s size and structure. We have always disre-
garded it in reckoning the potential energy of a system of charges, on
the assumption that it remains constant; the same goes for the second
integral. The third integral involves the distance between the charges.
The third integral is not hard to evaluate if you set it up in spherical
polar coordinates with one of the protons at the origin and the other
on the polar axis, and perform the integration over r first. Thus, by
direct calculation, you can show that the third integral has the value
e’/b, which we already know to be the work required to bring the two
protons in from an infinite distance to positions a distance b apart. So
you will have proved the correctness of Eq. 38 for this case, and by
invoking superposition you can argue that Eq. 38 must then give the
energy required to assemble any system of charges.

PROBLEM 1.34



