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FIGURE 2.1
Showing the division of the path into path elements ds.

LINE INTEGRAL OF THE ELECTRIC FIELD
. 2.1 Suppose that E is the field of some stationary distribution of
electric charges. Let PI and P2 denote two points anywhere in the field.

JP

2

The line integral of E between the two points is E . ds,
PI

taken along some path that runs from PI to P2, as in Fig. 2.1. This
means: Divide the chosen path into short segments, each segment
being represented by a vector connecting its ends; take the scalar prod-
uct of the path-segment vector with the field E at that place; add these
products up for the whole path. The integral as usual is to be regarded
as the limit of this sum as the segments are made shorter and more
numerous without limit.

Let's consider the field of a point charge q and some paths run-
ning from point PI to point P2 in that field. Two different paths are
shown in Fig. 2.2. It is easy to compute the line integral of E along
path A, which is made up of a radial segment running outward from
PI and an arc of radius r2. Along the radial segment of path A, E and
d s are parallel, the magnitude of E is q j r2

, and E . d s is simply
(q j r2

) ds. Thus the line integral on that segment is

(1)

The second leg of path A, the circular segment, gives zero because E
is perpendicular to ds everywhere on that arc. The entire line integral
is therefore

JP
2 (1 1)E· ds = q - --

PI rl r2

Now look at path B. Because E is radial with magnitude qj?,
E . ds = (qjr2) dr even when ds is not radially oriented. The corre-
sponding pieces of path A and path B indicated in the diagram make
identical contributions to the integral. The part of path B that loops
beyond ri makes a net contribution of zero; contributions from cor-
responding outgoing and incoming parts cancel. For the entire line
integral, path B will give the same result as path A. As there is nothing
special about path B, Eq. I must hold for any path running from PI
to P2•

Here we have essentially repeated, in different language, the
argument in Section 1.5, illustrated in Fig. 1.5, concerning the work
done in moving one point charge near another. But now we are inter-
ested in the total electric field produced by any distribution of charges.
One more step will bring us to an important conclusion. The line inte-
gral of the sum of fields equals the sum of the line integrals of the

(2)
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fields calculated separately. Or. stated more carefully, if E EI +
E2 + ... , then

J P2 E . ds = J P2 EI . ds + J P2 E2 . ds + . .. (3)
P, P, P,

where the same path is used for all the integrations. Now any electro-
static field can be regarded as the sum of a number (possibly enor-
mous) of point-charge fields, as expressed in Eq. 1.14 or 1.15. There-
fore if the line integral from PI to P2 is independent of path for each
of the point-charge fields E], E2, ... , the total field E must have this
property:

The line integral J P
2

E . ds for any electrostatic
P, (4)

field E has the same value for all paths from PI to
P2

FIGURE 2.2
The electric field E is that of a positive point Charge q.
The line integral of E from P, to P2 along path A has
the value q( 1/ r, - 1/(2)' It will have exactly the same
value if calculated for path B, or for any other path
from P, to P2.
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The points P2 and PI may coincide. In that case the paths are
all closed curves, among them paths of vanishing length. This leads to
the corollary:

The line integral J E . ds around any closed path

in an electrostatic field is zero

(5)

By electrostatic field is meant, strictly speaking, the electric field
of stationary charges. Later on, we shall encounter electric fields in
which the line integral is not path-independent. Those fields will usu-
ally be associated with rapidly moving charges. For our present pur-
poses we can say that, if the source charges are moving slowly enough,

the field E will be such that JE . ds is practically path-independent.

Of course, if E itself is varying in time, the E in J E . ds must be

understood as the field that exists over the whole path at a given
instant of time. With that understanding we can talk meaningfully
about the line integral in a changing electrostatic field.

POTENTIAL DIFFERENCE AND
THE POTENTIAL FUNCTION
2.2 Because the line integral in the electrostatic field is path-inde-
pendent, we can use it to define a scalar quantity <1>21, without speci-
fying any particular path:

<1>21 = - J P2 E . ds
PI

(6)

Thus <1>21 is the work per unit charge done in moving a positive charge
from PI to P2 in the field E. Thus <1>21 is a single-valued scalar function
of the two positions PI and P2• We call it the electric potential differ-
ence between the two points.

In .our CGS system of units, potential difference is measured in
erg/esu. This unit has a name of its own, the statvolt ("stat" comes
from "electrostatic"). The volt is the unit of potential difference in SI
units, the system in which the coulomb is the unit of charge and the
joule the unit of energy. One joule (107 ergs) of work is required to
move a charge of one coulomb through a potential difference of one
volt. The exact relations between CGS and SI electrical units are
given in Appendix E, taking into account the very recent official redef-
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inition of the meter in terms of the speed of light. Those exact relations
need not concern us now. Two approximate relations are all we shall
usually need: One coulomb is equivalent to 3 X 109 esu. One volt is
equivalent to Yaoo statvolt. These are accurate to better than 0.1 per-
cent, thanks to the accident that c is that close to 3 X 108 meters/sec.

Suppose we hold PI fixed at some reference position. Then ¢21

becomes a function of P2 only, that is, a function of the spatial coor-
dinates x, y, z. We can write it simply ¢(x, y, z), without the sub-
script, if we remember that its definition still involves agreement on a
reference point PI' We can say that ¢ is the potential associated with
the vector field E. It is a scalar function of position, or a scalar field
(they mean the same thing). Its value at a point is simply a number
(in units of work per unit charge) and has no direction associated with
it. Once the vector field E is given, the potential function ¢ is deter-
mined, except for an arbitrary additive constant allowed by the arbi-
trariness in our choice of PI'

As an example, let us find the potential associated with the elec-
tric field described in Fig. 2.3, the components of which are: Ex = Ky,
Ey = Kx, E; = 0, with K a constant. This is a possible electrostatic
field. Some field lines are shown. Since E, = 0, the potential will be
independent of z and we need consider only the xy plane. Let x], YI
be the coordinates of PI. and X2, Y2 the coordinates of P2. It is conve-

nient to locate PI at the origin: XI = 0, Yl = 0. To evaluate - JE .

ds from this reference point to a general point (X2, Y2) it is easiest to
use a path like the dotted path ABC in Fig. 2.3.

f(X2,Y2l

¢(X2' Y2)= - E . ds
(0,0) - f (Xl,O) - f (X2,y2)

- - Ex dx Ey dy
(0,0) (X2,0)

The first of the two integrals on the right is zero because Ex is zero
along the X axis. The second integration is carried out at constant x,
with E; = KX2:

f (X2,Y2) f Y2

- Ey dy = - KX2 dy = -KX2Y2
(X2,0) a

There was nothing special about the point (X2, Y2) so we can drop the
subscripts:

¢ = -Kxy

for the potential at any point (x, y) in this field, with zero potential at
the origin. Any constant could be added to this. That would only mean
that the reference point to which zero potential is assigned had been
located somewhere else.

__~ -=A~ ~ __~~~ x
--1

E,=K!f
E!J =K,

FIGURE 2.3
(a) A particular path, ABC, in the electric field Ex =
Ky, Ey = Kx. Some field lines are shown.

(7)

(8)

(9)

u

2

1
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We must be careful not to confuse the potential ¢ associated
with a given field E with the potential energy of a system of charges.
The potential energy of a system of charges is the total work required
to assemble it, starting with all the charges far apart. In Eq. 1.8, for
example, we expressed U, the potential energy of the charge system
in Fig. 1.6. The electric potential ¢(x, y, z) associated with the field
in Fig. 1.6 would be the work per unit charge required to move a unit
positive test charge from some chosen reference point to the point (x,
y, z) in the field of that structure of eight charges.

GRADIENT OF A SCALAR FUNCTION
2.3 Given the electric field, we can find the electric potential func-
tion. But we can also proceed in the other direction; from the potential
we can derive the field. It appears from Eq. 6 that the field is in some
sense the derivative of the potential function. To make this idea pre-
cise we introduce the gradient of a scalar function of position. Letf (x,
y, z) be some continuous, differentiable function of the coordinates.
With its partial derivatives aflax, aflay, and aflaz we can construct
at every point in space a vector, the vector whose x, y, z components
are equal to the respective partial derivatives. t This vector we call the
gradient of j, written "grad j," or Vf

"f ~ af ~ af ~ af
v =x-+y-+z-ax ay az

Vfis a vector that tells how the functionfvaries in the neighborhood
of a point. Its x component is the partial derivative of f with respect
to x, a measure of the rate of change off as we move in the x direction.
The direction of the vector Vf at any point is the direction in which
one must move from that point to find the most rapid increase in the
function f Suppose we were dealing with a function of two variables
only, x and y, so that the function could be represented by a surface
in three dimensions. Standing on that surface at some point, we see
the surface rising in some direction, sloping downward in the opposite
direction. There is a direction in which a short step will take us higher
than a step of the same length in any other direction. The gradient of

(10)

[We remind the reader that a partial derivative with respect to x, of a function of x,
y, Z, written simply af/ax, means the rate of change of the function with respect to x
with the other variables y and Z held constant. More precisely,

af = lim f(x + 6..x,y, z) - f(x, y, z)

ax "-<-0 Sx

As an example, if f = X2yz3,

af
- = 2xyz3
ax
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the function is a vector in that direction of steepest ascent, and its
magnitude is the slope measured in that direction.

Figure 2.4 may help you to visualize this. Suppose some partic-
ular function of two coordinates x and y is represented by the surface
f(x, y) sketched in Fig. 2.4a. At the location (Xb Yl) the surface rises
most steeply in a direction that makes an angle of about 80· with the
positive x direction. The gradient of f(x, Y), 'VI, is a vector function
of x and y. Its character is suggested in Fig. 2.4b "by a number of
vectors at various points in the two-dimensional space, including the
point (xj, Yl)' The vector function 'Vf defined in Eq. 10 is simply an
extension of this idea to three-dimensional space. [Be careful not to

FIGURE 2.4
The scalar function f(x, y) is represented by the surface
in (a). The arrows in (b) represent the vector function,
grad f.
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FIGURE 2.5
The shortest step for a given change in f is the radial
step AB, if f is a function of r only,

confuse Fig. 2.4a with real three-dimensional xyz space; the third
coordinate there is the value of the functionf(x, y).]

As one example of a function in three-dimensional space, sup-
pose f is a function of r only, where r is the distance from some fixed
point 0. On a sphere of radius ro centered about 0, f = f(ro) is con-
stant. On a slightly larger sphere of radius ro + dr it is also constant,
with the valuef = I tr« + dr). If we want to make the change from
f{ro) to f (ro + dr), the shortest step we can make is to go radially (as
from A to B) rather than from A to C, in Fig. 2.5. The "slope" of f is
thus greatest in the radial direction, so 'Vf at any point is a radially
pointing vector. In fact 'Vf = r (df/ dr) in this case, r denoting, for
any point, a unit vector in the radial direction.

DERIV ATION OF THE FIELD FROM THE POTENTIAL
2.4 It is now easy to see that the relation of the scalar functionfto
the vector function 'Vf is the same, except for a minus sign, as the
relation of the potential ep to the field E. Consider the value of ep at
two nearby points, (x, y, z) and (x + dx, y + dy, z + dz). The
change in ep, going from the first point to the second, is in first-order
approximation

aep aep aep
dip = - dx + - dy + - dz

ax ay az

On the other hand, from the definition of ep, the change can also be
expressed as

(11 )

dip = -E . ds (12)

The infinitesimal vector displacement ds is just x dx + Y dy + z dz.
Thus if we identify E with - 'Vep,Eqs. 11 and 12 become identical.
So the electric field is the negative of the gradient of the potential:

E = -'Vep (13)

The minus sign came in because the electric field points from a region
of positive potential toward a region of negative potential, whereas the
vector 'Vepis defined so that it points in the direction of increasing ep.

To show how this works, we go back to the example of the field
in Fig. 2.3. From the potential given by Eq. 9, ep = - Kxy, we can
recover the electric field we started with:

E = - 'V(-Kxy)

= - (x ~ + y ~) ( - Kxy)
ax ay

K(xy + yx) (14)
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POTENTIAL OF A CHARGE DISTRIBUTION
2.5 We already know the potential that goes with a single point
charge, because we calculated the work required to bring one charge
into the neighborhood of another in Eq. 3 of Chapter 1. The potential
at any point, in the field of an isolated point charge q, is just q/ r,
where r is the distance from the point in question to the source q, and
where we have assigned zero potential to points infinitely far from the
source.

Superposition must work for potentials as well as fields. If we
have several sources, the potential function is simply the sum of the
potential functions that we would have for each of the sources present
alone-providing we make a consistent assignment of the zero of
potential in each case. If all the sources are contained in some finite
region, it is always possible, and usually the simplest choice, to put
zero potential at infinite distance. If we adopt this rule, the potential
of any charge distribution can be specified by the integral:

cp(x, y, z) = J
All
sources

p(x', y', z') dx' dy' dz'
r

(15)

where r is the distance from the volume element dx' dy' dz' to the
point (x, y, z) at which the potential is being evaluated (Fig. 2.6).
That is, r = [(x - X')2 + (y - y'? + (z - z')2] 1/2. Notice the
difference between this and the integral giving the electric field of a
charge distribution (Eq. 15 of Chapter 1). Here we have r in the
denominator, not r2, and the integral is a scalar not a vector. From the
scalar potential function cp(x, y, z) we can always find the electric field
by taking the negative gradient of cp, according to Eq. 13.

Potential of two point charges. Consider a very simple
example, the potential of the two point charges shown in Fig. 2.7. A
positive charge of 12 esu is located 3 em away from a negative charge,
-6 esu. The potential at any point in space is the sum of the potentials
due to each charge alone. The potentials for some selected points in
space are given in the diagram. No vector addition is involved here,
only the algebraic addition of scalar quantities. For instance, at the
point on the far right which is 6 em from the positive charge and 5
em from the negative charge, the potential has the value 1% +
(-%) = 0.8. The unit here comes out esu/cm, which is the same as
erg/ esu, or statvolts. The potential approaches zero at infinite dis-
tance. It would take 0.8 erg of work to bring a unit positive charge in
from infinity to a point where cp = 0.8 statvolt. Note that two of the
points shown on the diagram have cp = O.The net work done in bring-
ing in any charge to one of these points would be zero. You can see
that there must be an infinite number of such points, forming a surface
in space surrounding the negative charge. In fact the locus of points

z "Field" point
(x,y,z)

dx',dy',dz' »>: ~

f·~'··--- I
. I

( , , ') II x,y,z I
I
I Charge I
ldisuibution I
I I
i/y I
I I
I I
) j

/ /
/ /

/ /
/ //

/.>
/'

x

FIGURE 2.6
Each element of the charge distribution p (x', y', z')
contributes to the potential <p at the point (x, y, z). The
potential at this point is the sum of all such
contributions (Eq. 15).
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FIGURE 2.7
The electric potential </J at various points in a system of
two point charges. </J goes to zero at infinite distance. </J

is given in units of statvolts, or ergs per unit charge.

Charge
- 6 esu

C{J= + 0.8
--~~-----

Charge
+ 12 esu

with any particular value of <p is a surface-an equipotential sur-
face-which would show on our two-dimensional diagram as a curve.

Potential of a long charged wire. There is one restriction on
the use of Eq. 15: It may not work unless all sources are confined to
some finite region of space. A simple example of the difficulty that
arises with charges distributed out to infinite distance is found in the
long charged wire whose field E we studied in Section 1.12. If we
attempt to carry out the integration over the charge distribution indi-
cated in Eq. 15, we find that the integral diverges-we get an infinite
result. No such difficulty arose in finding the electric field of the infi-
nitely long wire, because the contributions of elements of the line
charge to the field decrease so rapidly with distance. Evidently we had
better locate the zero of potential somewhere close to home, in a sys-
tem which has charges distributed out to infinity. Then it is simply a
matter of calculating the difference in potential <P2h between the gen-
eral point (x, y, z) and the selected reference point, using the funda-
mental relation, Eq. 6.

To see how this goes in the case of the infinitely long charged
wire, let us arbitrarily locate the reference point PI at a distance rl
from the wire. Then to carry a charge from PI to any other point P2

at distance rz requires the work per unit charge

<P21 = - J P2 E . ds = - J r2 (2A) dr
PI rl r

- 2A In rz + 2A In rl (16)
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This shows that the electrical potential for the charged wire can be
taken as

'I' = -2i\ In r + const

The constant, 2i\ In rj in this case, has no effect when we take
- grad 'I' to get back to the field E. In this case

A dcp 2i\r
-\1'1' = -r- =-

dr r

UNIFORML Y CHARGED DISK
2.6 Let us study, as a concrete example, the electric potential and
field around a uniformly charged disk. This is a charge distribution
like that discussed in Section l.l3, except that it has a limited extent.
The flat disk of radius a in Fig. 2.8 carries a positive charge spread
over its surface with the constant density a, in esu] crrr'. (This is a
single sheet of charge of infinitesimal thickness, not two layers
of charge, one on each side. That is, the total charge in the system is
7ra2u.) We shall often meet surface charge distributions in the future,
especially on metallic conductors. However, the object just described
is not a conductor; if it were, as we shall soon see, the charge could
not remain uniformly distributed but would redistribute itself, crowd-
ing more toward the rim of the disk. What we have is an insulating
disk, like a sheet of plastic, upon which charge has been "sprayed" so
that every square centimeter of the disk has received, and holds fixed,
the same amount of charge.

As a start, let's find the potential at some point Pion the axis of
symmetry, which we have made the y axis. All charge elements in a
thin, ring-shaped segment of the disk lie at the same distance from Pl.
If s denotes the radius of such an annular segment and ds is its width,
its area is 27rs ds. The amount of charge it contains, dq, is therefore
dq = a 27rS ds. All parts of this ring are the same distance away from
Ph namely, r = Vy2 + S2, so the contribution of the ring to the
potential at PI is dq]r, or 27rUS ds/vl + S2. To get the potential
due to the whole disk, we have to integrate over all such rings:

'1'(0, y, 0)

(19)

The integral happened to be an elementary one; on substituting u =

y2 + S2 it takes the form Ju -1/2 duo Putting in the limits, we obtain

'1'(0, y, 0) = 27rU (V y2 + a2 - y) for y > a (20)

(17)

(18)

FIGURE 2.8
Finding the potential at a point P1 on the axis of a
uniformly charged disk.
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A minor point deserves a comment: The result we have written
down in Eq. 20 holds for all points on the positive y axis. It is obvious
from the physical symmetry of the system (there is no difference
between one face of the disk and the other) that the potential must
have the same value for negative and positive y, and this is reflected
in Eq. 19, where only y2 appears. But in writing Eq. 20 we made a
choice of sign in taking the square root of i,with the consequence
that it holds only for positive y. The correct expression for y < 0 is
obtained by the other choice of root and is

for y < 0 (21)

In view of this, we should not be surprised to find a singularity in '1'(0,
y, 0) at y = O. Indeed, the function has an abrupt change of slope
there, as we see in Fig. 2.9, where we have plotted as a function of y
the potential on the axis. The potential at the center of the disk is 'I'
(0, 0, 0) = Zaraa. That much work would be required to bring a unit
positive charge in from infinity, by any route, and leave it sitting at
the center of the disk.

The behavior of '1'(0, y, 0) for very large y is interesting. For y
» a we can approximate Eq. 20 as follows:

vy2+a2_y=Y[(1+;:)1!21J

= y [ 1 + ~(;:) . . . - 1 J ~ ;~
(22)

FIGURE 2.9
A graph of the potential on the axis. The dashed curve
is the potential of a point charge q = 7ra2(J.

----_-L2a------------~a----------~O------------aL.-----------72a-----y
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Hence

1ra2(J
<,0(0, y, 0) ~-

Y

Now 1ra2(J is the total charge q on the disk, and Eq. 23 is just the
expression for the potential due to a point charge of this magnitude.
As we should expect, at a considerable distance from the disk (relative
to its diameter), it doesn't matter much how the charge is shaped; only
the total charge matters, in first approximation. In Fig. 2.9 we have
drawn, as a dotted curve, the function 1ra2(J/Y. You can see that the
axial potential function approaches its asymptotic form pretty quickly.

It is not quite so easy to derive the potential for general .points
away from the axis of symmetry, because the definite integral isn't so
simple. It proves to be something called an elliptic integral. These
functions are well-known and tabulated, but there is no point in pur-
suing here mathematical details peculiar to a special problem. One
further calculation, which is easy enough, may be instructive. We can
find the potential at a point on the very edge of the disk, such as P2 in
Fig. 2.10.

To calculate the potential at P2 we can consider first the thin
wedge of length R and angular width dO in Fig. 2.10. An element of
the wedge, the black patch at distance r from P2, contains an amount
of charge ar dO dr. Its contribution to the potential at P2 is therefore

just (J dO dr. The contribution of the entire wedge is then (J dO loR dr

= (JR dO. Now R is 2a cos 0 from the geometry of the right triangle,
and the whole disk is swept out as 0 ranges from -1r/2 to 1r/2. Thus
we find the potential at P2:

for y » a

J"/2
<p = 2(Ja cos 0 dO = 4(Ja

,,/2
(24)

Comparing this with 27r(Ja, the potential at the center of the
disk, we see that, as we should expect, the potential falls off from the
center to the edge of the disk. The electric field, therefore, must have
an outward component in the plane of the disk. That is why we
remarked earlier that the charge, if free to move, would redistribute
itself toward the rim. To put it another way, our uniformly charged
disk is not a surface of constant potential, which any conducting sur-
face must be unless charge is moving. t

The electric field on the symmetry axis can be computed directly
from the potential function:

a<,o
E=--

Y ay
d V 2 2- - 21r(J( y + a - y)

dy
(25)

[The fact that conducting surfaces have to be equipotentials will be discussed thor-
oughly in Chapter 3.

(23)

FIGURE 2.10
Finding the potential at a point P2 on the rim of a
uniformly Charged disk.
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FIGURE 2.11
(Facing page.) The electric field of the uniformly
charged disk. Solid curves are field lines. Dashed
curves are intersections, with the plane of the figure,
of surfaces of constant potential.

giving

Ey = 271'CT [ 1 - v'y/ + a2 ]

(To be sure, it is not hard to compute Ey directly from the charge
distribution, for points on the axis.)

As y approaches zero from the positive side, E; approaches
271'CT. On the negative y side of the disk, which we shall call the back,
E points in the other direction and its y component Ey is -271'CT. This
is the same as the field of an infinite sheet of charge of density CT,

derived in Section 1.13. It ought to be, for at points close to the center
of the disk, the presence or absence of charge out beyond the rim can't
make much difference. In other words, any sheet looks infinite if
viewed from close up. Indeed, Ey has the value 271'CT not only at the
center but all over the disk.

In Fig. 2.11 we show some field lines for this system and also,
plotted as dashed curves, the intersections on the yz plane of the sur-
faces of constant potential. Near the center of the disk these are lens-
like surfaces, while at distances much greater than a they approach
the spherical form of equipotential surfaces around a point charge.

Figure 2.11 illustrates a general property of field lines and equi-
potential surfaces. A field line through any point and the equipotential
surface through that point are perpendicular to one another, just as,
on a contour map of hilly terrain, the slope is steepest at right angles
to a contour of constant elevation. This must be so, because if the field
at any point had a component parallel to the equipotential surface
through that point, it would require work to move a test charge along
a constant-potential surface.

The energy associated with this electric field could be expressed
as the integral over all space of E2 dv /871'. It is equal to the work done
in assembling this distribution, starting with infinitesimal charges far
apart. In this particular example; as Problem 2.27 will demonstrate,
that work is not hard to calculate directly if we know the potential at
the rim of a uniformly charged disk.

There is a general relation between the work U required to
assemble a charge distribution p(x, y, z) and the potential ¢(x, y, z)
of that distribution:

y>O (26)

(27)

Equation 9 of Chapter 1, for the energy of a system of discrete point
charges, could have been written in this way:

(28)
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FIGURE 2.12
(a) A volume V enclosed by a surface 5 is divided (b)
into two pieces enclosed by 5, and 52' No matter how
far this is carried, as in (e) and (d), the sum of the
surface integrals over all the pieces equals the original
surface integral over 5, for any vector function F.

The second sum is the potential at the location of the jth charge, due
to all the other charges. To adapt this to a continuous distribution we
merely replace qj with p dv and the sum over j by an integral, thus
obtaining Eq. 27.

DIVERGENCE OF A VECTOR FUNCTION
2.7 The electric field has a definite direction and magnitude at
every point. It is a vector function of the coordinates, which we have
often indicated by writing E(x, y, z). What we are about to say can
apply to any vector function, not just to the electric field; we shall use
another symbol, F(x, y, z), as a reminder of that. In other words, we
shall talk mathematics rather than physics for a while and call F sim-
ply a general vector function. We shall keep to three dimensions,
however.

Consider a finite volume V of some shape, the surface of which
we shall denote by S. We are already familiar with the notion of the
total flux cJ:> emerging from S. It is the value of the surface integral of
F extended over the whole of S:

cJ:> = LF. da (29)

In the integrand da is the infinitesimal vector whose magnitude is the
area of a small element of S and whose direction is the outward-point-
ing normal to that little patch of surface, indicated in Fig. 2.12a.

Now imagine dividing V into two parts by a surface, or a dia-
phragm, D that cuts through the "balloon" S, as in Fig. 2.12h. Denote
the two parts of Vby VI and V2 and, treating them as distinct volumes,
compute the surface integral over each separately. The boundary sur-
face SI of VI includes D, and so does S2' It is pretty obvious that the
sum of the two surface integrals

(30)

will equal the original integral over the whole surface expressed in Eq.
29. The reason is that any given patch on D contributes with one sign
to the first integral and the same amount with opposite sign to the
second, the "outward" direction in one case being the "inward" direc-
tion in the other. In other words, any flux out of Vi> through this sur-
face D, is flux into V2. The rest of the surface involved is identical to
that of the original entire volume.

We can keep on subdividing until our internal partitions have
divided V into a large number of parts, Vi> ... , Vi, ... , VN, with
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surfaces Sl, ... , S;, ... , SN' No matter how far this is carried we
can still be sure that

t J .F . de, = J F . da = <J)
;~l S, S

(31)

What we are after is this: In the limit as N becomes enormous
we want to identify something which is characteristic of a particular
small region-and ultimately, of the neighborhood of a point. Now
the surface integral

J F· de,
s,

(32)

over one of the small regions, is not such a quantity, for if we divide
everything again, so that N becomes 2N, this integral divides into two
terms, each smaller than before since their sum is constant. In other
words, as we consider smaller and smaller volumes in the same local-
ity, the surface integral over one such volume gets steadily smaller.
But we notice that, when we divide, the volume is also divided into two
parts which sum to the original volume. This suggests that we look at
the ratio of surface integral to volume for an element in the subdivided
space:

J F· de,
s,

V;
(33)

It seems plausible that for N large enough, that is, for suffi-
ciently fine-grained subdivision, we can halve the volume every time
we halve the surface integral so that we shall find that with continuing
subdivision of any particular region this ratio approaches a limit. If
so, this limit is a property characteristic of the vector function F in
that neighborhood. We call it the divergence of F, written div F. That
is, the value of div F at any point is defined as

div F - lim ~ J F· de,
v;-o V; s,

(34)

where ~ is a volume including the point in question, and S;, over
which the surface integral is taken, is the surface of ~. We must
include the proviso that the limit exists and is independent of our
method of subdivision. For the present we shall assume that this is
true.

The meaning of div F can be expressed in this way: div F is the
flux out of ~, per unit of volume, in the limit of infinitesimal ~. It is
a scalar quantity, obviously. It may vary from place to place, its value
at any particular location (x, y, z) being the limit of the ratio in Eq.
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34 as Vi is chopped smaller and smaller while always enclosing the
point (x, y, z). So div F is simply a scalar function of the coordinates.

GAUSS'S THEOREM AND
THE DIFFERENTIAL FORM OF GAUSS'S LAW
2.8 If we know this scalar function of position div F, we can work
our way right back to the surface integral over a large volume: We
first write Eq. 31 in this way:

N N [J F· dal
]

Is F . da = ~ Is, F . da, = ~ V, s, V, (35)

In the limit N .....•.00, Vi .....•.0, the term in brackets becomes the diver-
gence of F and the sum goes into a volume integral:

IsF. da = JvdiVFdv (36)

Equation 36 is called Gauss's theorem, or the divergence theorem. It
holds for any vector field for which the limit involved in Eq. 34 exists.

Let us see what this implies for the electric field E. We have
Gauss's law which assures us that

(37)

If the divergence theorem holds for any vector field, it certainly holds
for E:

Is E . da = J v div E dv (38)

Both Eq. 37 and Eq. 38 hold for any volume we care to choose-of
any shape, size, or location. Comparing them, we see that this can only
be true if at every point,

div E = 41T"p (39)

If we adopt the divergence theorem as part of our regular mathemat-
ical equipment from now on, we can regard Eq. 39 simply as an alter-
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native statement of Gauss's law. It is Gauss's law in differential form,
that is, stated in terms of a local relation between charge density and
electric field.

THE DIVERGENCE IN CARTESIAN COORDINATES
2.9 While Eq. 34 is the fundamental definition of divergence, inde-
pendent of any system of coordinates, it is useful to know how to cal-
culate the divergence of a vector function when we are given its
explicit form. Suppose a vector function F is expressed as a function
of cartesian coordinates x, y, and z. That means that we have three
scalar functions, F; (x, y, z), Fy (x, y, z), and F, (x, y, z). We'll take
the region ~ in the shape of a little rectangular box, with one corner
at the point (x, y, z) and sides ~x, ~y, and ~z, as in Fig. 2.13a.
Whether some other shape will yield the same limit is a question we
must face later.

Consider two opposite faces of the box, the top and bottom for
instance, which would be represented by the vectors Z ~x ~y and
- Z~x ~y. The flux through these faces involves only the z component
of F, and the net contribution depends on the difference between Fz at
the top and F, at the bottom or, more precisely, on the difference
between the average of F, over the top face ..and the average of F, over
the bottom face of the box. Tothe-first.order in.small.quantities this
difference is (aFz/az) ~z. Figure.2:13b will help to explain this: The
average value of Fz on the bottom surface of the box, if we consider
only first-order variations in F, over this small rectangle, is its value
at the center of the rectangle. That value is, to first order] in ~x and
~y,

F ( ) ~x er, ~y sr,
z x, y, z + 2~ + 2ay (40)

For the average of Fz over the top face we take the value at the center
of the top face, which to first order in the small displacements is

~x llFz ~y e«, er,
Fz(x,y,z) +---+---+~z- (41)

2 ax 2 ay az

[This is nothing but the beginning of a Taylor expansion of the scalar function F" in
the neighborhood of (x, y, z). That is, Fz(x + a, y + b, z + c) = Fz(x, y, z) +

(
a a a ) ( 1 ) (a a a )na - + b - + c - Fz + ... + - a - + b - + c - Fz + .. ".The

ax ay az n! ax ay az
derivatives are all to be evaluated at (x, y, z). In our case a = t.x/2, b = t.y/2, c =
0, and we drop the higher-order terms in the expansion.
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FIGURE 2.13
Calculation of flux from the box of volume /::"x /::"y /::"z.

F

x
(a)

.1.x .1.y
(x+ T'Y + T'z + .1.Z)

(x,Y,Z)

(b)

The net flux out of the box through these two faces, each of which has
the area of .1.x.1.y,is therefore

r
.1.xsr, sv sr, aFz].1.x.1.y F (x y z) + - -- + -- -- + .1.z -

z " 2 ax 2 ay az
~ v-------------------)

(flux out of box at top)

r
.1.xet; .1.yaFz]

- .1.x.1.y Fz (x, y, z) + 2a:; + 2ay
~ v~--------------)

(flux into box at bottom)

(42)
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FIGURE 2.14
The limit of the flux/volume ratio is independent of the
shape of the box.

which reduces to Llx Lly Llz (aFz/az). Obviously, similar statements
must apply to the other pairs of sides. That is, the net flux out of the
box through the sides parallel to the yz plane is Lly Llz Llx (aFx/ax).
Notice that the product Llx Lly Llz occurs here too. Thus the total flux
out of the little box is

(
aFx aFy aFz)

cI> = Llx Lly Llz - +- +-
ax ay az

The volume of the box is Llx Lly Llz, so the ratio of flux to volume
is aFx/ ax + aFy/ ay + aFz/ az, and as this expression does not con-
tain the dimensions of the box at all, it remains as the limit when
we let the box shrink. [Had we retained terms proportional to (Llx)2,
(Llx Lly), etc., in the calculation of the flux, they would of course van-
ish on going to the limit.]

Now we can begin to see why this limit is going to be indepen-
dent of the shape of the box. Obviously it is independent of the pro-
portions of the rectangular box, but that isn't saying much. It is easy
to see that it will be the same for any volume that we can make by
sticking together little rectangular boxes of any size and shape. Con-
sider the two boxes in Fig. 2.14. The sum of the flux cI>! out of box 1
and cI>2 out of box 2 is not changed by removing the adjoining walls to
make one box, for whatever flux went through that plane was negative
flux for one and positive for the other. So we could have a bizarre
shape like Fig. 2.14c without affecting the result. We leave it to the
reader to generalize further. Tilted surfaces can be taken care of if
you will first prove that the vector sum of the four surface areas of the
tetrahedron in Fig. 2.15 is zero.

We conclude that, assuming only that the functions Fx, Fy, and
F, are differentiable, the limit does exist and is given by

(43)

. F sr, aFy aFz
div =-+-+-

ax ay az

If div F has a positive value at some point, we find-thinking of
F as a velocity field-a net "outflow" in that neighborhood. For
instance, if all three partial derivatives in Eq. 44 are positive at a point
P, we might have a vector field in that neighborhood something like
that suggested in Fig. 2.16. But the field could look quite different and
still have positive divergence, for any vector function G such that
div G = 0 could be superimposed. Thus one or two of the three partial
derivatives could be negative, and we might still have div F > O. The
divergence is a quantity that expresses only one aspect of the spatial
variation of a vector field.

(44)

(a)

(b)

(c)

FIGURE 2.15
You can prove that 8, + 82 + 83 + 8. = O.

»>
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FIGURE 2.16
Showing a field which in the neighborhood of the point
P has nonzero divergence.

FIGURE 2.17
The field inside and outside a uniform cylindrical
distribution of charge.

y

E

y

~~~----1-----L--------xx

9

E = 27rpa- outside
r

E = 27rpr inside

Let's apply this to an electric field that is rather easy to visualize.
An infinitely long circular cylinder of radius a is filled with a distri-
bution of positive charge of density p. Outside the cylinder the electric
field is the same as that of a line charge on the axis. It is a radial field
with magnitude proportional to 1/ r. The field inside is found by apply-
ing Gauss' law to a cylinder of radius r < a. You can do this as an
easy problem. You will find that the field inside is directly proportional
to r, and of course it is radial also. The exact values are:

27rpa2
E=--

r
for r > a

(45)
E = 27rpr for r < a

Figure 2.17 is a section perpendicular to the axis of the cylinder. Rec-
tangular coordinates aren't the most natural choice here, but we'll use
them anyway to get some practice with Eq. 44. With r =
IIX2 + y2, the field components are expressed as follows:

Ex = (~) E = 27rpa
2
x

r .X2 + y2

= 27rpx

for r > a

for r < a (46)

for r > a

for r < a

Ez is zero, of course.
Outside the cylinder of charge, div E has the value given by

= 0 (47)

Inside the cylinder, div E is

ee, es,- + - = 21l'p(i + 1) = 41l'pax ay (48)

We expected both results. Outside the cylinder where there is no
charge, the net flux emerging from any volume-large or small-is
zero, so the limit of the ratio flux/volume is certainly zero. Inside the
cylinder we get the result required by the fundamental relationEq.
39.
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THE LAPLACIAN
2.10 We have now met two scalar functions related to the electric
field, the potential function cp and the divergence, div E. In cartesian
coordinates the relationships are expressed as

E d (
A acp A acp A acp)= - gra cp = - x - + y - + z-

ax ay az

d
· E es, es, es,
IV =-+-+-ax ay az

(49)

(50)

Equation 49 shows that the x component of E is Ex acp/ax.
Substituting this and the corresponding expressions for Ey and E, into
Eq. 50, we get a relation between div E and sp;

d· E d' d (a2cp a
2
cp a2cp)IV = - IV gra cp = - - + - + -ax2 ay2 az2 (51)

The operation on cp which is indicated by Eq. 51 except for the minus
sign we could call "div grad," or "taking the divergence of the gradient
of .... " The symbol used to represent this operation is \72, called the
Laplacian operator, or just the Laplacian. The expression

is the prescription for the Laplacian in cartesian coordinates.
The notation V2 is explained as follows. The gradient operator

is often symbolized by V, called "del." Writing it out in cartesian
coordinates,

(52)

If we handle this as a vector, then its square would be

a2 a2 a2
V·V=-+-+-ax2 ay2 az2 (53)

the same as the Laplacian in cartesian coordinates. So the Laplacian
is often called "del squared," and we say "del squared cp," meaning
"div grad ip." Warning: In other coordinate systems, spherical polar
coordinates, for instance, the explicit forms of the gradient operator
and the Laplacian operator are not so simply related. It is well to
remember that the fundamental definition of the Laplacian operation
is "divergence of the gradient of."

We can now express directly a local relation between the charge
density at some point and the potential function in that immediate
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neighborhood. From Gauss' law in differential form, div E = 47rp, we
have

(54)

Equation 54, sometimes called Poisson's equation, relates the charge
density to the second derivatives of the potential. Written out in carte-
sian coordinates it is

(55)

One may regard this as the differential expression of the relationship
expressed by an integral in Eq. 15, which tells us how to find the
potential at a point by summing the contributions of all sources near
and fad

LAPLACE'S EQUATION
2.11 Wherever p = 0, that is, in all parts of space containing no
electric charge, the electric potential cp has to satisfy the equation

(56)

This is called Laplace's equation. We run into it in many branches of
physics. Indeed one might say that from a mathematical point of view
the theory of classical fields is mostly a study of the solutions of this
equation. The class of functions that satisfy Laplace's equation are
called harmonic functions. They have some remarkable properties, one
of which is this: If cp(x, y, z) satisfies Laplace's equation, then the
average value of cp over the surface of any sphere (not necessarily a
small sphere) is equal to the value of cp at the center of the sphere. We
can easily prove that this must be true of the electric potential ¢ in
regions containing no charge. Consider a point charge q and a spher-
ical surface S over which a charge q' is uniformly distributed. Let the
charge q be brought in from infinity to a distance R from the center
of the charged sphere, as in Fig. 2.18. The electric field of the sphere
being the same as if its total charge q' were concentrated at its center,

tin fact, it can be shown that Eq. 55 is the mathematical equivalent of Eq. 15. This
means, if you apply the Laplacian operator to the integral in Eq. 15, you will come
out with -47rp. We shall not stop to show how this is done; you'll have to take our
word for it or figure out how to do it.
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the work required is qq' / R. Now suppose, instead, that the point
charge q was there first and the charged sphere was later brought in
from infinity. The work required for that is the product of q' and the
average over the surface S of the potential due to the point charge q.
Now the work is surely the same in the second case, namely, qq' / R,
so the average over the sphere of the potential due to q must be q/ R.
That is indeed the potential at the center of the sphere due to the
external point charge q. That proves the assertion for any single point
charge outside the sphere. But the potential of many charges is just
the sum of the potentials due to the individual charges, and the aver-
age of a sum is the sum of the averages. It follows that the assertion
must be true for any system of sources lying wholly outside the sphere
S.

This property of the potential, that its average over an empty
sphere is equal to its value at the center, is closely related to a fact
that you may find disappointing: You can't construct an electrostatic
field that will hold a charged particle in stable equilibrium in empty
space. This particular "impossibility theorem," like others in physics,
is useful in saving fruitless speculation and effort. Let us see why it is
true. Suppose we have an electric field in which, contrary to the theo-
rem, there is a point P at which a positively charged particle would
be in stable equilibrium. That means that any small displacement of
the particle from P must bring it to a place where an electric field acts
to push it back toward P. But that means that a little sphere around
P must have E pointing inward everywhere on its surface. That con-
tradicts Gauss's law, for there is no negative source charge within the
region. (Our charged test particle doesn't count; besides, it's positive.)
In other words, you can't have an empty region where the electric field
points all inward or all outward, and that's what you would need for
stable equilibrium. To express the same fact in terms of the electric
potential, a stable position for a charged particle must be one where
the potential <p is either lower than that at all neighboring points (if
the particle is positively charged) or higher than that at all neighbor-
ing points (if the particle is negatively charged). Clearly neither is
possible for a function whose average value over a sphere is always
equal to its value at the center.

Of course one can have a charged particle in equilibrium in an
electrostatic field, in the sense that the force on it is zero. The point
where E = 0 in Fig. 1.10 is such a location. The position midway
between two equal positive charges is an equilibrium position for a
third charge, either positive or negative. But the equilibrium is not
stable. (Think what happens when the third charge is slightly dis-
placed from its equilibrium position.) It is possible, by the way, to trap
and hold stably an electrically charged particle by electric fields that
vary in time.

•q

FIGURE 2.18
The work required to bring in q' and distribute it over
the sphere is q' times the average, over the sphere, of
the potential 1>due to q.
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FIGURE 2.19
In a non-inverse-square field, the flux through a closed
surface is not zero.

DISTINGUISHING THE PHYSICS
FROM THE MATHEMATICS
2.12 In the last few sections we have been concerned with mathe-
matical relations and new ways of expressing familiar facts. It may
help to sort out physics from mathematics, and law from definition, if
we try to imagine how things would be if the electric force were not a
pure inverse-square force but instead a force with a finite range, for
instance, a force varying like

(57)

Then Gauss's law in the integral form expressed in Eq. 37 would
surely fail, for by taking a very large surface enclosing some sources,
we would find a vanishingly small field on this surface. The flux would
go to zero as the surface expanded, rather than remain constant. How-
ever, we could still define a field at every point in space. We could
calculate the divergence of that field, and Eq. 38, which describes a
mathematical property of any vector field, would still be true. Is there
a contradiction here? No, because Eq, 39 would also fail. The diver-
gence of the field would no longer be the same as the source density.
We can understand this by noting that a small volume empty of
sources could still have a net flux through it owing to the effect of a
source outside the volume, if the field has finite range. As suggested
in Fig. 2.19, more flux would enter the side near the source than would
leave the volume.

Thus we may say that Eqs. 37 and 39 express the same physical
law, the inverse-square law that Coulomb established by direct mea-
surement of the forces between charged bodies, while Eq. 38 is an
expression of a mathematical theorem which enables us to translate
our statement of this law from differential to integral form or the
reverse. The relations that connect E, p, and ¢ are gathered together
in Fig. 2.20 and 2.20',

How can we justify these differential relations between source
and field in a world where electric charge is really not a smooth jelly
but is concentrated on particles whose interior we know very little
about? Actually, a statement like Eq. 54, Poisson's equation, is mean-
ingful on a macroscopic scale only, The charge density p is to be inter-
preted as an average over some small but finite region containing
many particles. Thus the function p cannot be continuous in the way
a mathematician might prefer. When we let our region Vi shrink down
in the course of demonstrating the differential form of Gauss's law,
we know as physicists that we musn't let it shrink too far. That is
awkward perhaps, but the fact is that we make out very well with the
continuum model in large-scale electrical systems. In the atomic world
we have the elementary particles, and vacuum. Inside the particles,
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Electric field

(1.15)

E

(2.54)

Charge
density

Electric
potential

p

Electric field

Electric
potential

even if Coulomb's law turns out to have some kind of meaning, much
else is going on. The vacuum, so far as electrostatics is concerned, is
ruled by Laplace's equation. Still, we cannot be sure that, even in the
vacuum, passage to a limit of zero size has physical meaning.

(2.15)

(2.1)

FIGURE 2.20
How electric charge density, electric potential, and
electric field are related. The integral relations involve
the line integral and the volume integral. The differential
relations involve the gradient, the divergence, and div .
grad or '72, the Laplacian operator. Charge density pis
in esu/crn", potential q, is in statvolts, field E is in
statvoltlcm, and all lengths in cm.

FIGURE 2.20'
The same relations in 81 units. Charge density p is in
coulornb/rrr', potential <I>is in volts, field E is in volt!
meter, and all lengths are in meters. (fa = 8.854 X
10-12 coulomb/volt-meter.)
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FIGURE 2.21
For the subdivided loop, the sum of all the circulations,
I', around the sections is equal to the circulation I'
around the original curve C.

c

(a)

(b)

(c)

THE CURL OF A VECTOR FUNCTIONt
2.13 We developed the concept of divergence, a local property of a
vector field, by starting from the surface integral over a large closed
surface, In the same spirit, let us consider the line integral of some
vector fieldF(x, y, z), taken around a closed path, some curve C which
comes back to join itself The curve C can be visualized as the bound-
ary of some surface S which spans it A good name for the magnitude
of such a closed-path line integral is circulation; we shall use I' (capital
gamma) as its symbol:

r = Ic F ' ds (58)

In the integrand ds is the element of path, an infinitesimal vector
locally tangent to C (Fig, 2,21a), There are two senses in which C
could be traversed; we have to pick one to make the direction of ds
unambiguous, Incidentally, the curve C need not lie in a plane-it can
be as crooked as you like,

Now bridge C with a new path B, thus making two loops, C1

and C2, each of which includes B as part of itself (Fig, 2,21b), Take
the line integral around each of these, in the same directional sense,
It is easy to see that the sum of the two circulations, I', and f2' will
be the same as the original circulation around C: The reason is that
the bridge is traversed in opposite directions in the two integrations,
leaving just the contributions which made up the original line integral
around C Further subdivision into many loops, Cj, , , , , Ci, ' , , , CN,
leaves the sum unchanged:

J F . ds = i: J .F ' ds,
C i~l C,

(59)or

Here, too, we can continue indefinitely to subdivide, by adding
new bridges, seeking in the limit to arrive at a quantity characteristic
of the field F in a local neighborhood. When we subdivide the loops,
we make loops with smaller circulation, but also with smaller area, So
it is natural to consider the ratio of loop circulation to loop area, just
as we considered in Section 2.7 the ratio of flux to volume, However,
things are a little different here, because the area a, of the bit of sur-
face that spans a small loop C, is really a vector; a surface has an
orientation in space. In fact, as we make smaller and smaller loops in
some neighborhood, we can arrange to have a loop oriented in any
direction we choose, (Remember, we are not committed to any partie-

[Study of this section and the remainder of Chapter 2 can be postponed until Chapter
6 is reached. Until then our only application of this vector derivative will be the dem-
onstration that an electrostatic field is characterized by curl E = 0, as explained in
Section 2,16.
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ular surface over the whole curve C.) Thus we can pass to the limit in
essentially different ways, and we must expect the result to reflect this.

Let us choose some particular orientation for the patch as it goes
through the last stages of subdivision. The unit vector 0 will denote
the normal to the patch, which is to remain fixed in direction as the
patch surrounding a particular point P shrinks down toward zero size.
The limit of the ratio of circulation to patch area will be written this
way:

. rihm-
a;-O ai

J F· ds
lim_c_i _
ai-O ai

(60)or

The rule for sign is that the direction of 0 and the sense in which C,
is traversed in the line integral shall be related by a right-hand-screw
rule, as in Fig. 2.22. The limit we obtain by this procedure is a scalar
quantity which is associated with the point P in the vector field F, and
with the direction D. We could pick three directions, such as X, y, and
Z, and get three different numbers. It turns out that these numbers
can be considered components of a vector. We call the vector curl F.
That is to say, the number we get for the limit with 0 in a particular
direction is the component, in that direction, of the vector curl F. To
state this in an equation,

J F· ds
(curl F) ·fi r ri lim

c,
(61)lm-=

ai-O ai aj-O ai

For instance, the x component of curl F is obtained by choosing
fi X, as in Fig. 2.23. As the loop shrinks down around the point P,
we keep it in a plane perpendicular to the x axis. In general, the vector
curl F will vary from place to place. If we let the patch shrink down
around some other point, the ratio of circulation to area may have a
different value, depending on the nature of the vector function F. That
is, curl F is itself a vector function of the coordinates. Its direction at
each point in space is normal to the plane through this point in which
the circulation is a maximum. Its magnitude is the limiting value of
circulation per unit area, in this plane, around the point in question.

The last two sentences might be taken as a definition of curl F.
Like Eq. 61 they make no reference to a coordinate frame. We have
not proved that the object so named and defined is a vector; we have
only asserted it. Possession of direction and magnitude is not enough
to make something a vector. The components as defined must behave
like vector components. Suppose we have determined certain values
for the x, y, and z components of curl F by applying Eq. 61 with fi

FIGURE 2.22
Right-hand-screw relation between the surface normal
and the direction in which the circulation line integral is
taken.

FIGURE 2.23
The patch shrinks around P, keeping its normal pointing
in the x direction.

x
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chosen, successively, as X, y, and z. If curl F is a vector, it is uniquely
determined by these three components. If some fourth direction is now
chosen for 0, the left side of Eq. 61 is fixed and the quantity on the
right, the circulation in the plane perpendicular to the new 0, had bet-
ter agree with it! Indeed, until one is sure that curl F is a vector, it is
not even obvious that there can be at most one direction for which the
circulation per unit area at P is maximum-as was tacitly assumed in
the latter definition. In fact, Eq. 61 does define a vector, but we shall
not give a proof of that.

STOKES'THEOREM
2.14 From the circulation around an infinitesimal patch of surface
we can now work back to the circulation around the original large loop
C:

J N N (r)r = F . ds = L I', = L a; ~
c ;=! ;=! a,

(62)

In the last step we merely multiplied and divided by a; Now observe
what happens to the right-hand side as N is made enormous and all
the a/s shrink. The quantity in parentheses becomes (curl F) . 0;,
where 0; is the unit vector normal to the ith patch. So we have on the
right the sum, over all patches that make up the entire surface S span-
ning C, of the product "patch area times normal component of (curl
F)." This is nothing but the surface integral, over S, of the vector curl
F:

N (r.) N8 a; a; = 8 a; (curl F)

We thus find that

Is da . curl F (63)

Ie F . ds = Is curl F . da (64)

The relation expressed by Eq. 64 is a mathematical theorem
called Stokes' theorem. Note how it resembles Gauss's theorem, the
divergence theorem, in structure. Stokes' theorem relates the line inte-
gral of a vector to the surface integral of the curl of the vector. Gauss's
theorem (Eq. 36) relates the surface integral of a vector to the volume
integral of the divergence of the vector. Stokes' theorem involves a
surface and the curve that bounds it. Gauss' theorem involves a vol-
ume and the surface that encloses it.
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THE CURL IN CARTESIAN COORDINATES
2.15 Equation 61 is-the fundamental definition of curl F, stated
without reference to any particular coordinate system. In this respect'
it is like our fundamental definition of divergence, Eq. 34. As in"that
case, we should like to know how to calculate curl F when the vector
function F(x, y, z) is explicitly given. To find the rule, we carry out
the integration called for in Eq. 61, but we do it over a path of very
simple shape, one that encloses a rectangular patch of surface parallel
to the xy plane (Fig. 2.24). That is, we are taking fi = z. In agreement
with our rule about sign, the direction of integration around the rim

z

FIGURE 2.24
:1:. Circulation around a rectangular patch with n = z.

y

(x + ax, y + ay)

(x,y) -

~~~---------------------x
FIGURE 2.25
Looking down on the patch in Fig. 2.24.
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must be clockwise as seen by someone looking up in the direction of
ft. In Fig. 2.25 we look down onto the rectangle from above.

The line integral of A around such a path depends on the vari-
ation of Ax with y and the variation of Ay with x. For if Ax had the
same average value along the top of the frame, in Fig. 2.25, as along
the bottom of the frame, the contribution of these two pieces of the
whole line integral would obviously cancel. A similar remark applies
to the side members. To the first order in the small quantities fl.x and
fl.y, the difference between the average of Ax over the top segment of
path at y + fl.y and its average over the bottom segment at y is

(aa~x) fl.y (65)

The argument is like the one we used with Fig. 2.13b.

fl.x aAx
Ax (x, y) + 2 ax

fl.x aAx aAxA (x y) + - -- + fl.y -
x, 2 ax ay

(
at midpoint of )
bottom of frame

(
at midpoint Of)

top of frame

(66)

A =x

These are the average values referred to, to first order in the Taylor's
expansion. It is their difference, times the length of the path segment
fl.x, which determines their net contribution to the circulation. This
contribution is -fl.x fl.y (aAx/ay). The minus sign comes in because
we are integrating toward the left at the top, so that if Ax is more
positive at the top, it results in 'a negative contribution to the circula-
tion. The contribution from the sides is fl.y fl.x (aAy/ax), and here the
sign is positive, because if Ay is more positive on the right, the result
is a positive contribution to the circulation.

Thus, neglecting any higher powers of fl.x and fl.y, the line inte-
gral around the whole rectangle is

10 A . ds = (-fl.x) (aa~x) fl.y + (fl.y) (aa;) fl.x

(
aAy aAx)= fl.x fl.y ax - ay

(67)

Nowpx fl.y is the magnitude of the area of the enclosed rectan-
gle which we have represented by a vector in the z direction. Evidently
the quantity

aAy _ aAx
ax ay

(68)
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is the limit of the ratio

Line integral around patch
Area of patch

as the patch shrinks to zero size. If the rectangular frame had been
oriented with its normal in the positive y direction, we would have
found the expression

(69)

dAx dAz-----
dZ dX

for the limit of the corresponding ratio, and if the frame had been
oriented with its normal in the x direction, like the frame on the right
in Fig. 2.26, we would have obtained

(70)

dAz _ dAy
dy dZ

Although we have considered only rectangles, our result is
actually independent of the shape of the little patch and its frame, for
reasons much the same as in the case of the integrals involved in the
divergence theorem. For instance, it is clear that we can freely join
different rectangles to form other figures, because the line integrals
along the merging sections of boundary cancel one another exactly
(Fig. 2.27).

We conclude that, for any of these orientations, the limit of the
ratio of circulation to area is independent of the shape of the patch we

(7l)

FIGURE 2.26
For each orientation, the limit of the ratio circulation/
area determines a component of curl A at that point.
To determine all components of the vector curl A at
any point, the patches should all cluster around that
point; here they are separated for clarity.
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FIGURE 2.27
The circulation in the loop at the right is the sum of the
circulations in the rectangles, and the area on the right
is the sum of the rectangular areas. This diagram
shows why the circulation/area ratio is independent of
shape.

choose. Thus we obtain as a general formula for the components of
the vector curl F, when F is given as a function of x, y, and z:

~ (aFz aFy) ~ .: aFz)curl F = x - - - + y - - -ay az az ax
+ z (aFy _ aFx)ax ay (72)

You may find the following rule easier to remember than the formula
itself: Make up a determinant like this:

x y z
a a a

(73)-ax ay az
Fx Fy Fz

Expand it according to the rule for determinants, and you will get curl
F as given by Eq. 72. Notice that the x component of curl F depends
on the rate of change of F, in the y direction and the negative of the
rate of change of F, in the z direction, and so on.

The symbol V X, read as "del cross," where V is interpreted as
the "vector"

~a ~a ~ax-+y-+z-ax ay az
is often used in place of the name curl. If we write V X F and follow
the rules for forming the components of a vector cross product, we get
automatically the vector, curl F. So curl F and V X F mean the same
thing.

(74)

THE PHYSICAL MEANING OF THE CURL
2.16 The name curl reminds us that a vector field with a nonzero
curl has circulation, or vorticity. Maxwell used the name rotation, and
in German a similar name is still used, abbreviated tot. Imagine a
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velocity vector field G, and suppose that curl G is not zero. Then the

velocities in this field have something of this character: t t or t
superimposed, perhaps, on a general flow in one direction. For
instance, the velocity field of water flowing out of a bathtub generally
acquires a circulation. Its curl is not zero over most of the surface.
Something floating on the surface rotates as it moves along. In the
physics of fluid flow, hydrodynamics and aerodynamics, this concept
is of central importance.

To make a "curlmeter" for an electric field-at least in our
imagination-we could fasten positive charges to a hub by insulating
spokes, as in Fig. 2.28. Exploring an electric field with this device, we
would find, wherever curl E is not zero, a tendency for the wheel to
turn around the shaft. With a spring to restrain rotation, the amount
of twist could be used to indicate the torque, which would be propor-
tional to the component of the vector curl E in the direction of the

+ +
+ + q

FIGURE 2.28
The curlmeter.
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(a)

1)
•

(b)

FIGURE 2.29
If the line integral between P, and P2 is independent of
path, the line integral around a closed loop must be
zero.

shaft. If we can find the direction of the shaft for which the torque is
maximum, and clockwise, that is the direction of the vector curl E.
(Of course, we cannot trust the curlmeter in a field which varies
greatly within the dimensions of the wheel itself.)

What can we say, in the light of all this, about the electrostatic
field E? The conclusion we can draw is a simple one: The curl meter
will always read zero! That follows from a fact we have already
learned; namely, in the electrostatic field the line integral of E around
any closed path is zero. Just to recall why this is so, remember that
the line integral of E between any two points such as PI and P2 in Fig.
2.29 is independent of the path. As we bring the two points PI and P2

close together, the line integral over the shorter path in the figure obvi-
ously vanishes-unless the final location is at a singularity such as a
point charge, a case we can rule out. So the line integral must be zero
over the closed loop in Fig. 2.29d. But now, if the circulation is zero
around any closed path, it follows from Stokes' theorem that the sur-
face integral of curl E is zero over a patch of any size, shape, or loca-
tion. But then curl E must be zero everywhere, for if it were not zero
somewhere we could devise a patch in that neighborhood to violate the
conclusion. All this leads to the simple statement that in the electro-
static field E:

curl E = 0 (everywhere) (75)

The converse is also true. If curl E is known to be zero everywhere,
then E must be describable as the gradient of some potential function;
it could be an electrostatic field.

This test is easy to apply. When the vector function in Fig. 2.3
was first introduced, it was said to represent a possible electrostatic
field. The components were specified by Ex = Ky and Ey = Kx, to
which we should add E, = 0 to complete the description of a field in
three-dimensional space. Calculating curl E we find

aEz aE
(curl E) x = - - -y = 0ay az

ee, es,
(curl E)y = az - a; = 0 (76)

aE aEx(curl E).= -y - - = K - K = 0ax ay

This tells us that E is the gradient of some scalar potential. Inciden-
tally, this particular field E happens to have zero divergence also:

es, ee, es,
-+-+-=0ax ay az (77)

It therefore represents an electrostatic field in a charge-free region.
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FIGURE 2.30
Four of these vector fields
have zero divergence in the
region shown. Three have
zero curl. Can you spot
them?
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FIGURE 2.31
Some vector relations summarized.

GAUSS

Surface encloses volume

(Foda = (divFdvJs'urface ) ~olume

di F er; aFy er;
IV =-+-+-ax ay az

= V'·F

On the other hand, the equally simple vector function defined by
F; = Ky; F; = - Kx; F, = 0, does not have zero curl. Instead,

(curl F), = -2K (78)

Hence no electrostatic field could have this form. If you will sketch
roughly the form of this field, you will see at once that it has
circulation.

You can develop some feeling for these aspects of vector func-
tions by studying the two-dimensional fields pictured in Fig. 2.30. In
four of these fields the divergence of the vector function is zero
throughout the region shown. Try to identify the four. Divergence
implies a net flux into, or out of, a neighborhood. It is easy to spot in
certain patterns. In others you may be able to see at once that the
divergence is zero. In three of the fields the curl of the vector function
is zero throughout that portion of the field which is shown. Try to
identify the three by deciding whether a line integral around any loop

STOKES GRAD
Point

Point

Curve encloses surface Points enclose curve

lA.ds = jcuriAoda
curve surface

rp2 -rpI = (gradrp.dsx:
IN CARTESIAN COORDINATES

IA - ,(aAz aAy)cur _ x ----ay az
+ y (aAx _ aAz)az ax
+ z (aAy _ aAx)ax ay
= V'XA

gradrp = x arp +,arp +:iarpax Y ay az
= V'rp

,a+,a+,aV'= x- Y- z-ax ay az
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would or would not be zero in each picture. That is the essence of curl.
After you have studied the pictures, think about these questions before
you compare your reasoning and your conclusions with the explana-
tion given later in Fig. 2.32.

The curl of a vector field will prove to be a valuable tool later
on when we deal with electric and magnetic fields 'whose curl is not
zero. We have developed it at this point because the ideas involved are
so close to those involved in the divergence. We may say that we have
met two kinds of derivatives of a vector field. One kind, the divergence,
involves the rate of change of a vector component in its own direction,
8Fx/8x, and so on. The other kind, the curl, is a sort of "sideways
derivative," involving the rate of change of F; as we move in the y or
z direction.

The relations called Gauss's theorem and Stokes' theorem are
summarized in Fig. 2.3l. The connection between the scalar potential
function and the line integral of its gradient can also be looked on as
a member of this family of theorems and is included in the third
column.

PROBLEMS

2.1 The vector function which follows represents a possible electro-
static field:

Ex = 6xy E; = 3x2 - 3y2 E; = 0

Calculate the line integral of E from the point (0, 0, 0) to the point
(XI> Yl> 0) along the path which runs straight from (0, 0, 0) to (XI> 0,
0) and thence to (XI> YI> 0). Make a similar calculation for the path
which runs along the other two sides of the rectangle, via the point (0,
YI> 0). You ought to get the same answer if the assertion above is true.
Now you have the potential function ¢(x, y, z). Take the gradient of
this function and see that you get back the components of the given
field.

2.2 Consider the system of two charges shown in Fig. 2.7. Let z be
the coordinate along the line on which the two charges lie, with z =
o at the location of the positive charge. Make a plot of the potential ¢
along this line, plotting ¢ in statvolts against z in em, from z = - 5
to z = 15.
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2.3 A charge of 2 esu is located at the origin. Two charges of -1
esu each are located at the point with x, y, z coordinates 1, 1, 0 and
-1, 1, O. It is easy to see that the potential </>is zero at the point (0,
1, 0) if it is zero at infinity. It follows that somewhere on the y axis
beyond (0, 1, 0) the function </>(0, y, 0) must have a minimum or a
maximum. At that point the electric field E must be zero. Why?
Locate the point, at least approximately.

Ans. y = 1.6207.

2.4 Describe the electric field and the charge distribution that go
with the following potential:

</>= X2 + y2 + Z2

2a3
- a2 + --c:;----;:;----;;-;---;:;:

(x2 + y2 + Z2)1/2</>=

2.5 A sphere the size of a basketball is charged to a potential of
- 1000 volts. About how many extra electrons are on it, per cnr' of
surface?

2.6 A sphere the size of the earth has 1 coulomb of charge distrib-
uted evenly over its surface. What is the electric field strength just
outside the surface, in volts/meter? What is the potential of the
sphere, in volts, with zero potential at infinity?

Ans. 2.5 X 10-4 volt/meter; 1500 volts.

2.7 Designate the corners of a square, 5 em on a side, in clockwise
order, A, B, C, D. Put a charge 2 esu at A, - 3 esu at B. Determine
the value of the line integral of E, from point C to point D. (No actual
integration needed')

2.8 For the cylinder of uniform charge density in Fig. 2.17:
(a) Show that the expression there given for the field inside the

cylinder follows from Gauss's law.
(b) Find the potential </>as a function of r, both inside and out-

side the cylinder, taking </>= 0 at r = O.

2.9 For the system in Fig. 2.10 sketch the equipotential surface that
touches the rim of the disk. Find the point where it intersects the sym-
metryaxis.

2.10 A thin rod extends along the z axis from z = - d to z = d.
The rod carries a charge uniformly distributed along its length with
linear charge density A. By integrating over this charge distribution
calculate the potential at a point PIon the z axis with coordinates 0,
0, 2d. By another integration find the potential at a point P2 on the x



FIGURE 2.32
Discussion of Fig. 2.30.
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PROBLEM 2.12

axis and locate this point to make the potential equal to the potential
at PI.

Ans. AIn 3; x = V3d.
2.11 The points PI and P2 in the preceding problem happen to lie
on an ellipse which has the ends of the rod as its foci, as you can
readily verify by comparing the sums of the distances from PI and
from P2 to the ends of the rod. This suggests that the whole ellipse
might be an equipotential. Test that conjecture by calculating the
potential at the point (3dj2, 0, d) which lies on the same ellipse.
Indeed it is true, though there is no obvious reason why it should be,
that the equipotential surfaces of this system are a family of confocal
prolate spheroids. See if you can prove that. You will have to derive a
formula for the potential at a general point (x, 0, z) in the xz plane.
Then show that, if x and z are related by the equation X2 j (a2 - d2)

+ Z2 j a2 = 1, which is the equation for an ellipse with foci at z =
± d, the potential will depend only on the parameter a, not on x or z.

2.12 The right triangle with vertex P at the origin, base b, and
altitude a has a uniform density of surface charge (J. Determine the
potential at the vertex P. First find the contribution of the vertical
strip of width dx at x. Show that the potential at P can be written as
¢p = ab In[(l + sin O)jcos OJ.
2.13 By explicitly calculating the components of \7 X E, show that
the vector function specified in Problem 2.1 is a possible electrostatic
field. (Of course, if you worked that problem, you have already proved
it in another way by finding a scalar function of which it is the gra-
dient.) Evaluate the divergence of this field.

2.14 Does the function fix, y) = X2 + i satisfy the two-dimen-
sional Laplace's equation? Does the function g(x, y) = X2 - i?
Sketch the latter function, calculate the gradient at the points (x
0, y = 1); (x = 1,y = 0); (x = 0, y = -1); and (x = -1, y =
0) and indicate by little arrows how these gradient vectors point.

2.15 Calculate the curl and the divergence of each of the following
vector fields. If the curl turns out to be zero, try to discover a scalar
function ¢ of which the vector field is the gradient:

(a) F; = x + y; F, = -x + y; F; = -2z.
(b) Gx = 2y; Gy = 2x + 3z; Gz = 3y.
(c) H, = X2 - Z2; H; = 2; Hz = 2xz.

2.16 If A is any vector field with continuous derivatives, div (curl
A) = ° or, using the "del" notation, \7 . (\7 X A) = 0. We shall need
this theorem later. The problem now is to prove it. Here are two dif-
ferent ways in which that can be done:

(a) (Uninspired straightforward calculation in a particular coor-
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dinate system): Using the formula for \7 in cartesian coordinates, work
out the string of second partial derivatives that \7 . (\7 X A) implies.

(b) (With the divergence theorem and Stokes' theorem, no coor-
dinates are needed): Consider the surface S in the figure, a balloon
almost cut in two which is bounded by the closed curve C. Think about
the line integral, over a curve like C, of any vector field. Then invoke
Stokes and Gauss with suitable arguments.

2.17 Use the identity \7 (cp\7cp) = (\7cp)2 + cp\72cp and the diver-
gence theorem to prove that Eq. 38 of Chapter 1 and Eq. 27 of Chap-
ter 2 are equivalent for any charge distribution of finite extent.

2.18 A hollow circular cylinder, of radius a and length b, with open
ends, has a total charge Q uniformly distributed over its surface. What
is the difference in potential between a point on the axis at one end
and the midpoint of the axis? Show by sketching some field lines how
you think the field of this thing ought to look.

2.19 We have two metal spheres, of radii RI and R2, quite far apart
from one another compared with these radii. Given a total amount of
charge Q which we have to divide between the spheres, how should it
be divided so as to make the potential energy of the resulting charge
distribution as small as possible? To answer this, first calculate the
potential energy of the system for an arbitrary division of the charge,
q on one and Q - q on the other. Then minimize the energy as a
function of q. You may assume that any charge put on one of these
spheres distributes itself uniformly over the sphere, the other sphere
being far enough away so that its influence can be neglected. When
you have found the optimum division of the charge, show that with
that division the potential difference between the two spheres is zero.
(Hence they could be connected by a wire, and there would still be no
redistribution. This is a special example of a very general principle we
shall meet in Chapter 3: on a conductor, charge distributes itself so as
to minimize the total potential energy of the system.)

2.20 As a distribution of electric charge, the gold nucleus can be
described as a sphere of radius 6 X 10-13 em with a charge Q = 7ge
distributed fairly uniformly through its interior. What is the potential
CPo at the center of the nucleus, expressed in mega volts? (First derive
a general formula for CPo for a sphere of charge Q and radius a. Do
this by using Gauss's law to find the internal and external electric field
and then integrating to find the potential.)

Ans. 4>= 3Q/2a = 95,000 statvolts = 28.5 megavolts.

2.21 Suppose eight protons are permanently fixed at the corners of
a cube. A ninth proton floats freely near the center of the cube. There
are no other charges around, and no gravity. Is the ninth proton
trapped? Can it find an escape route that is all down hill in potential

PROBLEM 2.16
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PROBLEM 2.25

energy? Test it with your calculator. Many-digit accuracy wil1 be
needed!

2.22 An interstellar dust grain, roughly spherical with a radius of
3 X 10-7 meters, has acquired a negative charge such that its poten-
tial is - 0.15 volt. How many extra electrons has it picked up? What
is the strength of the electric field at its surface, expressed in volts/
meter?

2.23 By means of a van de Graaff generator, protons are acceler-
ated through a potential difference of 5 X 106 volts. The proton beam
then passes through a thin silver foil. The atomic number of silver is
47, and you may assume that a silver nucleus is so massive compared
with the proton that its motion may be neglected. What is the closest
possible distance of approach, of any proton, to a silver nucleus? What
will be the strength of the electric field acting on the proton at that
position?

2.24 Which of the two boxed statements in Section 2.1 we regard
as the corollary of the other is arbitrary. Show that, if the line integralJ E . ds is zero around any closed path, it follows that the line inte-

gral between two different points is path-independent.

2.25 Two point charges of strength 2 esu each, and two point
charges of strength -1 esu each are symmetrically located in the xy
plane as follows:The two positive charges are at (0, 2) and (0, - 2),
the two negative charges at (1, 0) and (-1, 0). Some of the equipo-
tentials in the xy plane have been plotted in the figure. (Of course
these curves are really the intersection of some three-dimensional
equipotential surfaces with the xy plane.) Study this figure until you
understand its general appearance. Now find the value of the potential
¢ on each of the curves A, B, and C, as usual taking ¢ = ° at infinite
distance. Do this by calculating the potential at some point on the
curve, a point chosen to make the calculation as easy as possible.
Roughly sketch in some intermediate equipotentials.

2.26 Use the result for Problem 2.12 to answer this question: If a
square with surface charge density a and side s has the same potential
at its center as a disk with the same surface charge density and diam-
eter d, what must be the ratio s/ d? Is your answer reasonable?

2.27 Use the result stated in Eq. 24 to calculate the energy stored
in the electric field of the charged disk described in Section 2.6. (Hint:
Consider the work done in building the disk of charge out from zero
radius to radius a by adding successive rings of width dr. Express the
total energy in terms of radius a and total charge Q = 1Ta2cr.)

Ans. 8Q2/37i""a.
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2.28 .A thin disk, radius 3 cm, has a circular hole of radius 1 em in
the middle. There is a uniform surface charge of -4 esu/crrr' on the
disk.

(a) What is the potential in statvolts at the center of the hole?
(Assume zero potential at infinite distance.)

(b) An electron, starting from rest at the center of the hole,
moves out along the axis, experiencing no forces except repulsion by
the charges on, the disk. What velocity does it ultimately attain? (Elec-
tron mass = 9 X 10-28 gm.)

2.29 One of two nonconducting spherical shells of radius a carries
a charge Q uniformly distributed over its surface, the other a charge
- Q, also uniformly distributed. The spheres are brought together
until they touch. What does the electric field look like, both outside
and inside the shells? How much work is needed to move them far
apart?

2.30 Consider a charge distribution which has the constant density
p everywhere inside a cube of edge b and is zero everywhere outside
that cube. Letting the electric potential rf> be zero at infinite distance
from the cube of charge, denote by rf>o the potential at the center of
the cube and rf>, the potential at a corner of the cube. Determine the
ratio rf>o/rf>,. The answer can be found with very little calculation by
combining a dimensional argument with superposition. (Think about
the potential at the center of a cube with the same charge density and
with twice the edge length.)

2.31 A fiat nonconducting sheet lies in the xy plane. The only
charges in the system are on this sheet. In the half-space above the
sheet, Z > 0, the potential is rf> = rf>o e:" cos kx, where rf>o and k are
constants.

(a) Verify that rf> satisfies Laplace's equation in the space above
the sheet.

(b) What do the electric field lines look like?
(c) Describe the charge distribution on the sheet.

2.32 To show that it takes more than direction and magnitude to
make a vector, let's try to define a vector which we'll name squrl F by
a relation like Eq. 61 with the right-hand side squared:

(squrl F) . n ~ [~~ _J_Ci_:_
i

._d_' r
Prove that this does not define a vector. (Hint: Consider reversing the
direction of fi.)


