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Abstract

The recent development of a timing instrument accurate to 100 picoseconds may
enable the CsI calorimeter in the E14 experiment to measure the incident angle
of incoming photons, a feat that E14’s predecessor E391a, was unable to accom-
plish. Consequently, the K0

L → π0νν decay, otherwise known as the ”golden
mode” decay, can be more reliably identified and counted. Using a Monte Carlo
simulation, we present a method utilizing the new timing instrument to measure
the incident angle of a photon to 10◦ or less accuracy along one dimension.

I would like to thank, first and foremost, my adviser Prof. Yau Wah for his
guidance and the numerous pointers that have gotten me past dead-ends in the
course of this work. I thank also Professors Gene Mazenko and Margaret Gardel
for their useful suggestions on writing this paper and for overseeing the senior
thesis program. Last but not least, my colleague Jiasen Ma has my gratitude for
helping me to understand PAW and GEANT, and for deftly solving the occa-
sional programming problem.

1



1 Introduction

1.1 Branching Ratio of the Golden Mode Decay

The theoretical value of the K0
L → π0νν decay branching ratio is calculated to

be (2.6± 0.3)× 10−11 [1] by incorporating CP violation in the Standard Model.
The experimental determination of this branching ratio can be said to be an
ideal test of CP violation owing to the small uncertainty in its theoretical value.

1.2 Overview of E14

The aim of the E14 experiment is to measure the golden mode branching ratio.
E14’s predecessor, E391a, had the same general setup. It counted the number
of golden mode decays occurring within a large sample of kaon decays ((5.13±
0.4)× 109), giving a branching ratio value of 6.7× 10−8 at 90% CL.[2]

In the experiment, a 12GeV proton beam is incident on a Pt target, produc-
ing a beam that contains, but does not purely consist of, K0

L particles. (Figure
1) The methods employed to distinguish between K0

L and background are be-
yond the scope of this project.

Figure 1

The beam is channeled into the fiducial decay region in the detector where
kaon decay occurs. Event rejection is effected by veto calorimeters to detect
stray photons. The details of this process are also outside the scope of this
project. The CsI calorimeter is used to reconstruct the accepted events from
decay products, namely photons, incident on it.

1.3 Identifying Golden Mode Decays

The main challenge in the experiment is signal definition, which must be very
sensitive due to the extremely small branching ratio of the decay. The golden
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mode decay produces a π0 and νν. The neutrino and antineutrino are too
difficult to detect, and hence do not enter into consideration for signal definition.
The π0 further decays into two photons with a high branching fraction of ∼
98.8%. (Figure 2) These photons must be collected by the CsI calorimeter
because the time and energy information obtained from them is required to
apply kinematic cuts. Hence we require that two photons for each π0 be incident
on the CsI calorimeter with no collection on the veto calorimeters.

Figure 2

The above criterion is insufficient. A complete kinematic description would
also require that a collected pair of photons did indeed come from a π0. Namely,
we require that the photons be kinematically consistent with a π0.

1.4 Kinematic Consistency and the Importance of Photon
Incident Angle

Solving the equations for conservation of energy, linear momentum and 4-vectors
would allow us to reconstruct the π0. Using subscripts π for the pion (supposed)
and γ1 and γ2 for the two photons in the energy E, rest mass m and momentum
P, these equations are:

Eπ = Eγ1 + Eγ2

Pπi = Pγ1i + Pγ2i, i = x, y, z

E2
γ1 − P 2

γ1 = 0
E2
γ2 − P 2

γ2 = 0
E2
π − P 2

π = m2
π

These are 7 equations in 12 unknowns. Measuring the photon energies would
give another 2 equations, which are not enough to solve for all the unknowns.
In contrast, measuring the photon momenta components along each direction
would give 6 more equations, which enables us to solve for all the unknowns.
Algebraic manipulation of the above equations give us

2Eγ1Eγ2(1− cos θ0) = m2
π
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where θ0 is the angle between the direction of propagation of both photons.
We can measure Eγ1 and Eγ2, and obtain θ0 by measuring the incidence angle
of each photon. The resulting value of mπ must match the accepted literature
value for the π0 mass for us to conclude that the photons are indeed decay
products of the π0.

In event reconstruction, the vertex of the π0 decay is also of interest to us.
This can be obtained by measuring the photon incidence angles and the distance
between the sites on which the photons are incident.

1.5 Purpose and Overview of the Project

The purpose of this project is to study the feasibility of measuring photon
incident angle with the new timing instrument, assuming a photon energy of
1GeV. More specifically, we want to find an application of kinematic fitting [3]
to measure photon incident angle using time data collected by the detector.

We use Monte Carlo simulations of the detector setup to generate the data
corresponding to several values of the incident angle. The data is then analyzed
to find suitable fitting parameters for our purpose. The simulations are run
on version 3.21 of GEANT, a CERN-developed, Fortran-based application that
simulates the geometry and material of detectors and the passage of elementary
particles through them. [4]

The CsI calorimeter in the E14 experiment will use a scintillator composed
of an array of CsI crystals. A photon incident on the array produces an electro-
magnetic shower that is converted into a current pulse by the PM tube attached
to each crystal. In each crystal, the energy corresponding to the current, as well
as the time taken for the accumulated energy to cross a preset threshold of
1MeV, can be measured.

We use the data collected to construct a template of means and standard
deviations obtained from large samples of simulated events. We now discuss
this process in greater detail.
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2 Method

2.1 Monte Carlo Setup

Figure 3

GEANT is used to simulate an 11×11 CsI crystal array. Each crystal has a
length of 50cm with an exposed face of 2.5cm×2.5cm. The blocks are labelled
1 to 121, from left to right of each row, then from the top row downwards.
Thus, the center row consists of crystal blocks 56 to 66. An incoming photon
is incident at a known angle θ to the normal on the center of block 61 in the
plane containing the lengths of blocks 56 to 66. For every block b, the total
deposited energy Eb in block b is recorded. Also recorded is tb, the time elapsed
between the photon’s generation at a fixed point in space and the crossing of
the 1MeV threshold in block b. If the 1MeV threshold is not crossed, then tb is
not recorded. This constitutes one event. 5× 104 events are simulated for each
of angle θ = 0◦, 5◦, 10◦, 15◦, 20◦, 25◦, 30◦.

Our choice of angular range is justified by another Monte Carlo study of
incident angles of photons generated by various decay processes in the experi-
ment. Shown below are histograms of events binned by photon incident angle.
Note that the incident angle generally falls between 0◦ and 30◦.
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Figure 4

2.2 Histogramming and Fitting Procedure

However, not every block receives more than 1MeV of energy. This limits the
number of blocks from which we can obtain information. To study the amount
of information available when using 1MeV as the threshold, we histogram events
for each θ by the number of blocks along the center row with > 1MeV accumu-
lated energy. These histograms are listed in Annex A. The results show that
we can use, on average, between 5 to 6 blocks’ data for our analysis. These
blocks are about half of all the blocks in the center row. This was expected
since most of the energy in the photon would be deposited in the half of the row
that is in the direction of photon incidence. As far as availability of information
is concerned, the choice of 1MeV for the threshold is justified.

For each event, the normalized time ∆tb = tb−t61 is calculated. Given θ and
b, we expect every ∆tb to be an independent random variable with the same
mean and variance, because the photon in each event sees the same detector
geometry. (This assumption proves to be flawed, as we will see later.) By the
Central Limit Theorem [5], the ∆tb values of each θ and b will be approximately
Gaussian distributed.

Events with nonnegative tb and t61 are histogrammed by ∆tb value. We
obtain each histogram and the corresponding Gaussian fit as follows:
1. Build an initial histogram using an arbitrary but reasonable bin width. Use
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the standard deviation of the Gaussian fit of the histogram as an estimate of
the actual standard deviation.
2. Apply Scott’s formula [6]:

W = 3.49σN−1/3 (1)

where W is the optimal bin width, N is the sample size, and σ is the actual stan-
dard deviation (for which we use the sample standard deviation as an estimate).

Scott’s formula estimates the bin width that minimizes the integrated mean
squared error of the fitted curve relative to the actual curve. Although the
formula assumes the actual curve to be a Gaussian, it has been reported that
calculated bin widths for skewed Gaussian do not deviate more than 30% from
the optimal bin widths. Hence we do not expect the mean and variance of the
fitted curve to differ significantly from those of the optimal curve. This was
verified by varying the bin width within the reported error range and checking
the corresponding means and variances. (Here we define significance as a change
in mean of the same or greater order than the standard deviation, and/or a
change in variance of order equal to or greater than the leading decimal point.)
3. A Gaussian fit is applied to the positive ∆tb region of the histogram to obtain
rough estimates of the mean and standard deviation. A second Gaussian fit is
then applied to the region within one standard deviation of the mean to obtain
more precise values for the mean ,µb(θ), and standard deviation, σb(θ).

2.3 The Anomalous Peaks Problem

Shown below for example is the histogram for b = 63 and θ = 15◦:

Figure 5
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The reader may have spotted a problem in the above histogram. Besides
the main peak, there is a smaller peak occurring mostly in the region ∆tb < 0.
Similar peaks are found in the histograms for other values of θ. Only histograms
for which θ = 0◦ do not have these smaller peaks.

These anomalous ∆tb < 0 peaks present serious problems. 1) Had the
anomalous peaks of different θ values been distinct from one another, we may
still distinguish between two anomalous events that occur at different θ values.
This was not the case as the anomalous peaks for different θ occur over the
same range of ∆tb values. 2) Application of our proposed method in the actual
experiment hinges on our ability to identify the block on which the photon is
first incident, henceforth called the block of incidence. We have just found that
the block of incidence is not the block with the smallest tb. Hence we need to
either find another way of identifying the block of incidence or abandon it as
the reference block.

2.4 Explaining the Anomalous Peaks

Before we attempt to solve the problems presented above, we should understand
how the anomalous peaks arise. At 1GeV, the cross-section for pair production
in CsI dominates. Hence, we assume that the photon interacts only by pair
production.

The attenuation of high-energy photons of intensity I0 by pair production
in an absorber of thickness x and radiation length X0 is given by [7]:

I = I0 exp (− 7x
9X0

)

The above expression says that the intensity is reduced by a factor of e when
the beam travels through the distance 9X0/7, known as the conversion length.
We may interpret this as the average distance in the absorber travelled by the
photon before interacting.

In our case, the absorber is CsI and has X0 = 1.86cm[8]. Hence the conver-
sion length is 2.39cm. Now, suppose a 1GeV photon is incident at angle θ on
the center of block 61. The distance travelled by the photon in block 61, if it
does not interact, is OA in the diagram below, given by OA(θ) = 1.25/ sin θ.
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Figure 6

For some angles in the range we are interested in, OA(5◦) = 14.3cm, OA(10◦) =
7.20cm, OA(15◦) = 4.83cm, OA(20◦) = 3.65cm, OA(25◦) = 2.96cm, OA(30◦) =
2.50cm. Observe that the conversion length is significant compared to these
lengths, especially at larger angles.

In such events, it would not be unusual to have the energy accumulated in
block 62 cross the 1MeV threshold sooner than it does in block 61. This results
in ∆t62 < 0. For the larger incidence angles, we may even have ∆tb < 0 for
b > 62. The reader is cautioned not to conclude that all late conversion events
are identified with ∆tb < 0. Note that the anomalous peak extends into the
∆tb > 0 region for many of the graphs.

On a sidenote, the late conversion problem also puts our assumption that
each random variable ∆tb has the same mean and variance into question. We
cannot expect photons undergoing conversion nearer the next block to take
the same mean amount of time to deposit energy in the next block as photons
undergoing conversion further away. Indeed, we find that some of the histograms
exhibit not just a second peak but also a tail on the major peak.

2.5 Re-defining Reference Block as a Solution to Late
Conversion

More urgently, we would like to be able to identify the reference block for the
normalization of our fitting parameters, partly because we need to offset the
effect of late conversion by shifting the reference block, and also because we will
not have the luxury of knowing which block to label as the block of incidence
in the actual experiment.

Therefore, we abandon the use of the block of incidence for the reference.
Instead, we take as our reference the block with minimum time taken for the
energy to accumulate past the 1MeV threshold. The motivation for this is that
the block in which the vertex of conversion occurs is intuitively likely to be the
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block with the most rapid accumulation of energy. Shown below is a table of
percentage of events with minimum time taken for cumulative energy deposition
to cross the 1MeV threshold.

Table 1: Distribution of events by block with minimum tb
θ(◦) Percentage of events with min tb in b=

61 62 63 64 65
5 87.17% 10.85% 1.13% 0.23% 0.03%
10 86.81% 12.57% 0.52% 0.07% 0.01%
15 79.37% 19.31% 0.63% 0.03% 0
20 71.43% 23.74% 1.06% 0.02% 0
25 64.71% 24.20% 1.24% 0.05% 0
30 59.31% 21.40% 1.10% 0.04% 0

Note that tb is minimum primarily in blocks 61 and 62. This is consistent
with our observation that the conversion length is still within the confines of
block 61 for all angles.

3 Constructing the Template

Applying the minimum time definition of reference block, we re-define ∆tb =
tb − tmin where tmin is the time measurement in the block with the least time
taken for accumulated energy to cross the threshold and b is the number of
blocks to the right the current block is from the minimum time block. The
resulting histograms are listed in Annex B.

If, as we suspect, the anomalous peaks are due to a shift in the vertex
of conversion to the minimum time block, then the new definition will offset
the shift so that ∆tb would depend only on the photon incident angle, as we
originally intended. In this case, we would observe only one peak, which is true
of the histograms of ∆tb. As an example, the histograms for θ = 15◦ are shown
below:
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Figure 7

We apply a Gaussian fit on each histogram, and plot the means µb(θ) of
Gaussian fits on the histograms for each block against angle θ, using the standard
deviations σb(θ) of the Gaussian fits to define the error bars. The following
template was obtained:
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Figure 8
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The tabular representation is given by:

Table 2: µb ± σb of ∆tb = tb − tmin
θ(◦) ∆tm ± σ in nsec in b=

1 2 3 4 5
0 0.21± 0.05 0.44± 0.12 0.62± 0.18 0.72± 0.20 0.80± 0.22
5 0.16± 0.04 0.37± 0.09 0.57± 0.17 0.70± 0.23 0.80± 0.22
10 0.13± 0.04 0.32± 0.07 0.51± 0.13 0.69± 0.19 0.80± 0.21
15 0.10± 0.04 0.28± 0.05 0.46± 0.09 0.65± 0.16 0.78± 0.20
20 0.09± 0.03 0.25± 0.05 0.41± 0.07 0.59± 0.12 0.74± 0.17
25 0.07± 0.03 0.22± 0.04 0.37± 0.06 0.53± 0.09 0.69± 0.14
30 0.06± 0.03 0.20± 0.03 0.34± 0.05 0.48± 0.07 0.63± 0.09

To maximize the accuracy of our method, we obtain also the means and
variances of other blocks for which adequate information is available - that
is, Eb > 1MeV in the majority of events. Thus the blocks we consider in our
method are, the single block on the left of the minimum time block (b = −1), all
blocks in the same row and to the right of the reference block (b = 1, 2, . . . , and
all blocks to the right and one row above the reference block (b = 1u, 2u, . . . ).
These blocks are shaded in the diagram below:

Figure 9

Note that for the blocks above the minimum time block m, we use the block m’
directly above m as the reference block. This is to accomodate the incorporation
of the vertical direction into analysis in future research. Using reference block
m for the upper blocks would mix information for the vertical direction into
that for the horizontal direction. The histograms for the added blocks may be
found in Annex C. The corresponding table of means and standard deviations
is as follows:

In addition to our graph in Figure 8, we now add two more graphs to our
template:
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Table 3: µb ± σb of ∆tb = tb − tm for b = −1 and ∆tb = tb − tm′ for the rest
θ(◦) ∆tm ± σ in nsec in b=

-1 1’ 2’ 3’ 4’
0 0.21± 0.05 0.09± 0.08 0.27± 0.14 0.42± 0.19 0.51± 0.22
5 0.27± 0.08 0.05± 0.07 0.21± 0.12 0.37± 0.18 0.50± 0.21
10 0.31± 0.11 0.01± 0.07 0.15± 0.11 0.32± 0.15 0.46± 0.21
15 0.35± 0.15 −0.01± 0.08 0.10± 0.11 0.25± 0.14 0.41± 0.19
20 0.36± 0.17 −0.03± 0.10 0.06± 0.12 0.19± 0.14 0.35± 0.18
25 0.37± 0.17 −0.04± 0.12 0.03± 0.14 0.15± 0.15 0.29± 0.17
30 0.38± 0.17 −0.05± 0.13 0.01± 0.15 0.12± 0.16 0.23± 0.16

Figure 10
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Figure 11

At this point, we recall that the time uncertainties involved so far have not
taken into account the 100ps=0.1ns resolution of the timing instrument. Note
that the resolution is on a similar scale as the σb’s. To take into account the
instrumental uncertainty, we add it to the statistical uncertainty in quadrature
to obtain the total uncertainty

σ′b =
√
σ2
b + 0.12 (2)

Now, given any event with unknown incident angle, we can compare the
measured ∆tb’s with the µb’s and σ′b’s to make an informed guess at the angle.
The next step is to find out how good this guess is.

4 Testing the Accuracy of the Method

We generate 105 events for each value of θ = 0◦, 5◦, . . . , 30◦ on GEANT using
a different randomization seed. For any given event, we obtain ∆tb for blocks
with deposited energy exceeding 1MeV. For each angle φ in the template, we
calculate the χ2 statistic

χ2(φ) =
1

n− 1

∑
b:Eb>1MeV

(∆tb − µb(φ))2

σ′2b (φ)
(3)

where n is the number of blocks with Eb > 1MeV
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The value of φ that minimizes χ2(φ), giving χ2
min, is the output φout of our

algorithm. For each of the output angles φout, we bin the events with output
φout according to their θ values. These histograms are listed in Annex D.

Obviously, the more φout = θ events there are, the better our method. We
note from Annex D that each of the peaks occurs at θ, as expected. However,
we can improve the angular resolution further by considering the following:

For a given event, if the χ2 values for different φ are very close to one
another (in other words, the differences in χ2 values are small compared to the
magnitude of χ2

min), the algorithm is likely to minimize to the wrong angle. For
a given output φout, we create a scatterplot of χ2

min against ∆χ2 = χ2
2 − χ2

min

where χ2
2 is the next smallest calculated value of χ2(φ). These scatterplots are

listed in Annex E.
In each scatterplot, we separate the events into two categories. In the first

category are events where φout = θ, which we mark in red. The second category
contains events where φout 6= θ, which we mark in blue.

Referring to the scatterplots in Annex E, we note that for φout = 0◦ and 30◦,
there are regions in which the density of blue dots is higher than the density of
red dots. As expected, these blue dot regions occur where ∆χ2 is small relative
to χ2

min. We delineate the abovementioned regions (using black solid lines in
the scatterplots) and reject the events falling within these regions. Such regions
are absent in the scatterplots for the other values of φout. For 0◦, the region is
given by

χ2
min > 2.3∆χ2 + 0.8

and for 30◦ the region is given by

χ2
min > 2∆χ2 + 1.1, x < 0.5
χ2
min > 6.5∆χ2 − 1, x ≥ 0.5

With this additional step in place, the final results yielded by our algorithm
are as shown in Annex F.

5 Interpretation of the Results

The resulting histograms show us the spread of possible θ values for each φout.
We perform a Gaussian fit on each histogram, while fixing the mean at φout.
These fits are displayed with the histograms in Annex F.

From each fit, we obtain the standard deviation σout(φout) which we take to
be the uncertainty of the angle found by our algorithm. We tabulate and graph
the σout(φout) values below:
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Table 4: Error function for χ2 minimization algorithm
φout(◦) 0 5 10 15 20 25 30
σout(◦) 5.8± 0.4 8± 2 10± 2 9.0± 1.0 9.5± 0.9 9.00± 0.16 7.0± 0.5

Figure 12

We fit a polynomial curve through the points and obtain

σout = (−5.64× 10−5)φ4
out + (3.46× 10−3)φ3

out − 0.0796φ2
out + 0.838φout + 5.80

The maximum residual is about 0.9, which we consider to be small relative
to the σout values.

6 Conclusion

From the previous graph, we conclude that our proposed method yields angle
measurements with uncertainties of no more than 10◦. When two events are
detected simultaneously in the calorimeter, measuring their incidence angles
allows us to determine kinematic consistency as well as the decay vertex.

However, more needs to be done before we can perform such measurements.
Our analysis was restricted along one dimension, whereas photons will be im-
pinging on a two-dimensional surface in the actual experiment. Hence a study
incorporating a vertical angle of incidence is required.

Moreover, the list of techniques and variables we tested in this project is not
exhaustive and it is very likely that there exists another technique that would
give better angular resolution using the same apparatus. Nevertheless, our
upper bound of 10◦ on the 1-dimensional angular resolution (where previously
no means of measuring the incidence angle could be employed) demonstrates
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the usefulness of the new timing instrument and the potential benefits of further
refinement on the angle measurement technique.
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Annex A

Events binned by number of blocks (along center row) with deposited energy
greater 1MeV. Each histogram corresponds to one angle. Note that the mode
for each angle is 6. The least is 4, which is just slightly less than half the
maximum number of blocks that may provide timing information.

Hence the threshold of 1MeV is justified. Setting a threshold higher than
1MeV would decrease the number of blocks providing information, while setting
a lower threshold would decrease the time and energy resolution.

Figure A1
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Annex B

Minimum time block as reference. Blocks to right of reference block.

Figure B1
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Figure B2
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Figure B3
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Figure B4
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Figure B5
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Figure B6
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Figure B7
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Annex C

Minimum time block as reference. 1 block left of reference block (b = −1) and
blocks one row above and to right of reference block (b = 1u, 2u, . . . , 4u).

Figure C1
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Figure C2
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Figure C3
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Figure C4
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Figure C5
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Figure C6
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Figure C7
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Annex D

Output of fitting algorithm. Each histogram corresponds to one output angle,
with x-axis as the input angle.

Figure D1
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Annex E

Scatterplot of χ2
min against ∆χ2. Each scatterplot corresponds to one output

angle.

Figure E1
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Annex F

Output of fitting algorithm and then correction subject to event categorization
on χ2

min −∆χ2 criteria. Each histogram corresponds to one output angle with
x-axis as input angle.

Figure F1
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