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result is extended to two background sources. Conditions on the applicability under correlated cuts are

described. This technique is applied to both a Toy model and an analysis of data from a rare neutral

kaon decay experiment.
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1. Introduction

In this paper we describe a bifurcation analysis procedure for
data driven background prediction in a blind analysis of a closed
signal region. In this type of analysis we define a signal region, in
some set of variables, where we keep the events hidden during
the analysis. We wish to predict the number of background events
under the full set of cuts in this signal region. We use the term cut
to refer to a specific selection criteria. An event that passes a cut is
selected and an event which fails a cut is thrown out. The
procedure uses the application of inverse cuts to properly
measure the veto power of the different sets of cuts while
keeping the signal region closed. This technique was first
developed for a single background source in the stopped K+

experiments E787 and E949 at Brookhaven [1]. The work in this
paper was inspired by the use of the bifurcation technique in the
E391a experiment [2].

We begin with a derivation of the bifurcation analysis in the
case of one background source and uncorrelated cuts. We then
extend this to two background sources and a simple model of
correlation between cuts. Throughout this paper the method will
be applied to a Toy model to predict background and then applied
to an example from the E391a experiment. We utilize the
Mathematica software package to implement the Toy model [3].
2. One background case

We begin discussing this method in the case of a single
background source. Here a collection of setup cuts have been
applied which eliminate all other sources of background. Our goal
ll rights reserved.
is to predict the amount of background in the signal region when
we apply the cuts A and B, which we refer to as the bifurcation
cuts. The number of events we observe will be determined by the
number of events before applying the cuts A and B (after applying
the setup cuts) and the cut survival probability (CSP):

Nbkg ¼N0PðABÞ: ð1Þ

We consider events to lie in a multi-dimensional space with a
dimension corresponding to every variable on which we can cut.
Our set of cuts defines a multidimensional signal region which we
wish to keep blind. If two cuts show no correlation in the events
that they cut, this implies that these two cuts are orthogonal in
this space. A diagram of this situation is shown in Fig. 1. The CSP
can then be decomposed into P(AB)=P(A)P(B):

Nbkg ¼N0PðAÞPðBÞ: ð2Þ

This can be expanded into

Nbkg ¼
N2

0PðAÞPðBÞPðAÞPðBÞ

N0PðAÞPðBÞ
: ð3Þ

Here A and B are the inverses of cuts A and B, events which pass
cut A fail cut A. Then we can calculate this from data based on the
number of observed events in the signal region under the
different cut conditions:

N
AB
¼N0PðAÞPðBÞ

N
AB
¼N0PðBÞPðAÞ

N
AB
¼N0PðAÞPðBÞ: ð4Þ

Here NAB is the number of background events observed with
the application of cut A and the inverse of cut B. N

AB
is the

observed background events with the inverse of cut A and cut
B applied. N

AB
is the count when the inverse of both A and B are

www.elsevier.com/locate/nima
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Fig. 1. Schematic of background distribution in the cut space.

Table 1
Probability distribution functions for the variables of each event type in the Toy

model.

Background x p

1 f ðxÞ ¼ 1; xA ð0;1� f ðpÞ ¼ 1=x; pA ½0; x�
f ðxÞ ¼ 0; x=2ð0;1� f ðpÞ ¼ 0; p=2½0; x�

2 f ðxÞ ¼ 1; xA ½0;1Þ f ðpÞ ¼ 1=ð1�xÞ;pA ½0;1�x�

f ðxÞ ¼ 0; x=2½0;1Þ f ðpÞ ¼ 0; p=2½0;1�x�

a b

1 f ðaÞ ¼ 1; aA ½0;1� f ðbÞ ¼ 1�b; bA ½0;1�
f ðaÞ ¼ 0; a=2½0;1� f ðbÞ ¼ 0; b=2½0;1�

2 f ðaÞ ¼ 1�a; aA ½0;1� f ðbÞ ¼ 1; bA ½0;1�
f ðaÞ ¼ 0; a=2½0;1� f ðbÞ ¼ 0; b=2½0;1�
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Fig. 2. Kinematic variable distributions for Backgrounds 1 and 2.

Table 2
Cut survival probabilities for each event type in the Toy model.

Event type P(A) P(B)

Background 1 0.5 0.25

Background 2 0.25 0.5
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applied. All of these values are outside the signal region defined in
the multi-dimensional cut space allowing us to predict the
background without opening the box:

Nbkg ¼
NAB N

AB

N
AB

: ð5Þ

The procedure for producing a background prediction is as
follows. First, apply setup cuts to the data, the number of events
in the signal box is N0. The setup cuts are all the cuts other than A

or B, which are applied. They should remove all other background
sources. There is more freedom in choosing the setup cuts than
cuts A and B, since they can be correlated with each other or A and
B. We then apply cut A and B. By applying B, we are looking at
events which are outside the signal box in the multidimensional
space. We count the number of events which pass these sets of
cuts, NAB . We then do the same procedure in reverse applying the
set of cuts B and the inverse of A to find N

AB
. Finally, we apply the

inverse of both cuts A and B to find N
AB

. These values are
combined to produce the background prediction. Eq. (5) predicts
no background events, if NAB or N

AB
are zero. This can be true for

one of three reasons: N0=0, P(A) or P(B)=0, or PðAÞ or PðBÞ ¼ 0. The
first two possibilities are what we expect and reflect cases where
there should be no background events. The third possibility is
more problematic. When PðAÞ or PðBÞ ¼ 0, N

AB
should also be zero,

but statistical fluctuations may prevent that from being true. This
condition results from a poor choice of cuts where one cut
eliminates almost no background events. If possible a different
choice of cuts for A and B should be made.
3. The Toy model

Each event is described by four variables. Two kinematic
variables, p and x, which are used to describe the signal region and
two cut variables, and a and b, which will be used to define the
cuts. The cut variables, a and b, are independent of the kinematic
variables, p and x. All of these variables range from 0 to 1.

We define two different types of events: Backgrounds 1 and 2.
They both have x variables with uniform distributions between 0
and 1. Their p’s have uniform distributions between 0 and x for
Background 1 and between 0 and 1�x for Background 2.
Background 1 has an uniform distribution of a between 0 and 1
and variable b has a linearly decreasing density with values
between 0 and 1. Background 2’s a distribution is a linearly
decreasing density with values between 0 and 1 and an uniform
distribution between 0 and 1 for b. The distribution of each
variable for the two background types is shown in Table 1.

The distributions of the kinematic variables p and x are shown
in Fig. 2. We define a signal region by specifying the allowed
kinematic variables: 0:25oxo0:75 and 0:25opo0:75. We
define our cuts on variables a and b as

A¼ ða40:5Þ

B¼ ðb40:5Þ: ð6Þ

A and B are true or false statements. If they are false the event is
cut. With the cut points defined, we can then calculate the CSP for
each event type: P(A) or P(B). In this Toy model the CSPs can be
calculated analytically because we know the underlying
distributions. These values are shown in Table 2.

3.1. One background in the Toy model

In this section we discuss the case of a single significant
background. The background prediction is given by Eq. (5). We
generated 1� 104 Background 1 events over the whole range of
kinematic variables. This leaves � 2200 background events in the
signal region before applying cuts A and B. In Table 3, we show
the observed number of events for each combination of cuts, the
predicted background, and the observed background after
applying both cuts A and B. The predicted background of
267:8720:6 agrees well with the 256716 observed
background events.
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Table 3
Single background study for the Toy model with only Background 1.

N0 2236 747

NAB
831729

N
AB

280717

N
AB

869729

Predicted background 267.8720.6

Observed background 256716
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4. Two background case

4.1. Derivation

The previous derivation applied in the case of a single
background source. If the background is made up of two different
background sources, N0 = N1 + N2, with different CSPs then there
is a correlation introduced between cuts that must be accounted
for. To do so, we begin by replacing Eqs. (2) and (4) with

Nbkg ¼N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ

NAB ¼N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ

N
AB
¼N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ

N
AB
¼N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ: ð7Þ

Then our previous calculation of the background has a cross term
introduced. We wish to find the correction to the one background
solution. We begin by substituting the above definitions into the
solution for the one background case, Eq. (5):

NAB N
AB

N
AB

¼
1

N
AB

½N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ�

� ½N1P1ðBÞP1ðAÞþN2P2ðBÞP2ðAÞ�: ð8Þ

We expand the numerator:

N
AB

N
AB
¼N2

1P1ðAÞP1ðAÞP1ðBÞP1ðBÞþN1N2½P1ðAÞP2ðAÞP2ðBÞP1ðBÞ

þP2ðAÞP1ðAÞP1ðBÞP2ðBÞ�þN2
2P2ðAÞP2ðAÞP2ðBÞP2ðBÞ: ð9Þ

We multiply Nbkg by N
AB

to allow us to find the difference of
Eq. (8) and Nbkg:

NbkgN
AB
¼ ½N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ�

�½N1P1ðAÞP1ðBÞþN2P2ðAÞP2ðBÞ� ¼N2
1P1ðAÞP1ðAÞP1ðBÞP1ðBÞ

þN1N2½P1ðAÞP2ðAÞP1ðBÞP1ðBÞþP2ðAÞP1ðAÞP2ðBÞP1ðBÞ�

þN2
2P2ðAÞP2ðAÞP2ðBÞP2ðBÞ ð10Þ

NAB N
AB

N
AB

¼Nbkgþ
N1N2

N
AB

½P1ðAÞP2ðAÞP2ðBÞP1ðBÞ

þP2ðAÞP1ðAÞP1ðBÞP2ðBÞ�P1ðAÞP2ðAÞP1ðBÞP2ðBÞ

�P2ðAÞP1ðAÞP2ðBÞP1ðBÞ�: ð11Þ

The cross term vanishes if P1(A) = P2(A) and P1(B) = P2(B), where
for the purposes of the cuts the two backgrounds are the same.
We can simplify the cross term by rewriting the CSPs of the
inverse cuts in terms of the CSPs of the cuts, PiðAÞ ¼ 1�PiðAÞ. Each
element of the cross term has the same structure which can be
expanded to

PiðAÞPjðAÞPkðBÞP‘ðBÞ ¼ PiðAÞPkðBÞð1�PjðAÞÞ

�ð1�P‘ðBÞÞ ¼ PiðAÞPkðBÞ�PiðAÞPjðAÞPkðBÞ

�PiðAÞPkðBÞP‘ðBÞþPiðAÞPjðAÞPkðBÞP‘ðBÞ: ð12Þ
Summing the elements of the cross term cancels everything
except the terms with two CSPs:

NAB N
AB

N
AB

¼Nbkgþ
1

N
AB

ðN1N2ðP1ðAÞP2ðBÞþP2ðAÞP1ðBÞ

�P1ðAÞP1ðBÞ�P2ðAÞP2ðBÞÞ

¼Nbkg�
N1N2ðP2ðAÞ�P1ðAÞÞðP2ðBÞ�P1ðBÞÞ

N
AB

: ð13Þ

We can further simplify the cross term by defining
DA ¼ P2ðAÞ�P1ðAÞ and DB ¼ P2ðBÞ�P1ðBÞ:

Nbkg ¼
NAB N

AB

N
AB

þ
N1N2

N
AB

DADB: ð14Þ

The second term in Eq. (14) is not the contribution of a particular
source to the background prediction. It is a correction to the
prediction of the total number of background events from both
sources.

4.2. Properties of the two background solution

We now discuss the behavior of the Eq. (14). This solution has
the reasonable property that it is symmetric with respect to the
definitions of the cuts A and B and the Backgrounds 1 and 2.

We consider the behavior of Eq. (14) under extreme condi-
tions. First, we show that under no conditions can the total Nbkg

be negative. The correction term will have its maximum negative
value when DA ¼ 1 and DB ¼�1 or DA ¼�1 and DB ¼ 1. Under
these conditions, N

AB
¼ 0 and Nbkg is undefined. We therefore

want to study Nbkg’s behavior as we approach this limit. We begin
by setting DB ¼�1 and studying the limit as DA-1. In this case
cut B removes Background 1 completely, but the Background 1
events which survive AB still contribute to the prediction
produced by Eq. (5).

The condition that DB ¼�1 sets what values the CSPs of the B

can take

P1ðBÞ ¼ P2ðBÞ ¼ 0 ð15Þ

P2ðBÞ ¼ P1ðBÞ ¼ 1: ð16Þ

Substituting these values into Eq. (7), we find

NAB ¼N2P2ðAÞ ð17Þ

N
AB
¼N1P1ðAÞ ¼N1ð1�P1ðAÞÞ ð18Þ

N
AB
¼N2P2ðAÞ ¼N2ð1�P2ðAÞÞ: ð19Þ

We then substitute these values into Eq. (14) and sum the two
terms:

Nbkg ¼
N1ðP2ðAÞ�P2ðAÞP1ðAÞ�P2ðAÞþP1ðAÞÞ

1�P2ðAÞ

¼
N1P1ðAÞð1�P2ðAÞÞ

1�P2ðAÞ
¼N1P1ðAÞ: ð20Þ

As DA-1, P1ðAÞ-0. Therefore the Nbkg goes to 0. This indicates
that Nbkg never has a non-physical negative value.

We now consider the case of DB ¼ 0. Here the correction term
is zero, but the contribution from the second background is not.
We can see that the first term in Eq. (14) correctly predicts the
background by simplifying Eq. (7), substituting P(B) for P1(B) and
P2(B):

Nbkg ¼ ðN1P1ðAÞþN2P2ðAÞÞPðBÞ ð21Þ
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Fig. 3. Predicted and observed background for different admixtures of a

Background 2. Squares are predicted background (without second background

correction), triangles are the observed background in data, diamonds are the

corrected prediction. The x-axis is the number of generated Background 2 events,

the total number of events, N1+N2, was held constant at 2� 104.
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Fig. 4. Cut space with correlated cuts.
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NAB ¼ ðN1P1ðAÞþN2P2ðAÞÞPðBÞ ð22Þ

N
AB
¼ ðN1P1ðAÞþN2P2ðAÞÞPðBÞ ð23Þ

N
AB
¼ ðN1P1ðAÞþN2P2ðAÞÞPðBÞ: ð24Þ

Substituting these values into the first term of (14) and
simplifying gives

NAB N
AB

N
AB

¼ ðN1P1ðAÞþN2P2ðAÞÞPðBÞ: ð25Þ

This is Nbkg, so the correction is not necessary to properly predict
the background when one of the D’s is zero.

4.3. Interpretation of the two background solution

It may seem counterintuitive that two backgrounds cannot be
combined simply. This can best be understood as the second
background introducing an implicit correlation.

As an example, consider two backgrounds which individually
have no correlation between cuts A and B, but do have different
cut survival probabilities. If P1(A)=0.75 and P1(B)=0.75, while
P2(A)=0.25 and P2(B)=0.25 then the resulting combination of the
two backgrounds will have a correlation. Events which survive cut
A are have a greater chance to survive cut B, because events which
survive cut A are more likely to be part of Background 1. Events
that do not survive cut A are less likely to survive cut B, because
they are more likely to be part of Background 2. Therefore there is
a correlation between cuts A and B, even though for the individual
backgrounds they are uncorrelated.

The values of N1, N2, DA, and DB are not directly accessible in
data without opening the signal box. There are two options: either
derive these values from Monte Carlo or from other regions in
signal space. Determining N1 and N2 generally will require both an
alternative way of predicting one of the backgrounds and the
value of N0, the total number of background after setup cuts. This
raises the question whether determining N0 biases the analysis.
From N0 and the other observed background numbers, NAB , N

AB
;

and N
AB
; it is possible to effectively open the box and count Nbkg.

Determining DA and DB also requires additional input. Their
values can be derived from either Monte Carlo or data outside the
signal region.

4.4. Two background Toy model

In our Toy model, we can study the effect of multiple
background sources by varying the relative strength of a second
background. We begin by calculating with the false assumption
that there is a single background mode. We vary the relative
admixture of Background 2. The total number of events, N1+ N2,
was held constant at 2� 104. The discrepancy between the
prediction and the observed background increases as the number
of background events from the second source increases, as shown
in Fig. 3.

We now apply the correction term to the background
prediction (Eq. (14)). In the case of this Toy model, we know the
values of N1 and N2 because we have set them. In a real analysis, it
would be necessary to determine these values through either
Monte Carlo studies or studies of different signal regions which
are then extrapolated into the signal box. The differences in the
cut probabilities, DA and DB, also need to be determined from
outside sources. In this model DA ¼�25% and DB ¼ 25%. Since the
probability differences are of opposite signs the correction is
negative and reduces the predicted background.

In Fig. 3, we show the results of keeping the total number of
background events the same while increasing the fraction of
Background 2 events. Here only the predicted background with-
out correction increases, while the observed and corrected
backgrounds remain relatively flat.
5. Cut correlation

In the derivation of both the one and two background cases,
we have assumed that the cuts A and B are uncorrelated. Of
course, in real applications, it is unlikely to find two cuts which
are perfectly uncorrelated. We would therefore like to find some
general figure of merit to determine how correlation introduces
errors into the background prediction. The following discussion
will assume only one background source.

5.1. Impact of cut correlation

To derive a correction to the background prediction, we use a
simple model of cut correlation. We describe a case where the
cuts have a weak linear correlation. In this model, the posterior
probability for each cut is different than the prior probability (see
Fig. 4).

We begin by specifying the background values in terms of the
CSPs, which are now posterior probabilities, specifying the
dependance on both cut conditions:

Nbkg ¼N0PðAjBÞPðBÞ ¼N0PðAÞPðBjAÞ ð26Þ

NAB ¼N0PðAjBÞPðBÞ ¼N0PðAÞPðBjAÞ ð27Þ
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N
AB
¼N0PðAjBÞPðBÞ ¼N0PðAÞPðBjAÞ ð28Þ

N
AB
¼N0PðAjBÞPðBÞ ¼N0PðAÞPðBjAÞ: ð29Þ

We proceed in the same fashion as for the two background case
and substitute these definitions into the solution (Eq. (7)) for the
single background, uncorrelated case:

NAB N
AB

N
AB

¼
N2

0PðAjBÞPðBÞPðAjBÞPðBÞ

N0PðAjBÞPðBÞ
: ð30Þ

We assume the correlations are small and relate the different
posterior probabilities to each other:

PðAjBÞ ¼ PðAjBÞ�e ð31Þ

PðAjBÞ ¼ PðAjBÞþe ð32Þ

PðBjAÞ ¼ PðBjAÞ�d ð33Þ

PðBjAÞ ¼ PðBjAÞþd: ð34Þ

The corrections e and d should be small. What we mean by small
will be defined at the end of the derivation by what values are
necessary for the corrections which are first order in e and d to
be negligible. We have the freedom to choose to formulate
the correction as a function of e or d. We choose to use e. We
substitute the definitions into Eq. (31):

NAB N
AB

N
AB

¼
N0PðAjBÞðPðAjBÞ�eÞPðBÞ

PðAjBÞþe
¼

N0ðPðAjBÞPðBÞ�ePðBÞÞ

1þ
e

PðAjBÞ

: ð35Þ

Assuming the e term in the denominator is small, we expand this
result in e:

NAB N
AB

N
AB

� ðN0ðPðAjBÞPðBÞ�ePðBÞÞÞÞ

� 1�
e

PðAjBÞ
þ

e2

PðAjBÞ2
þOðe3Þ

 !
: ð36Þ

Multiplying this out and keeping the second order terms of e gives

NAB N
AB

N
AB

¼N0PðAjBÞPðBÞ�eN0 PðBÞþ
PðAjBÞPðBÞ

PðAjBÞ

 !

þe2N0
PðBÞ

PðAjBÞ
þ

PðAjBÞPðBÞ

PðAjBÞ2

 !
: ð37Þ

The first term with no e factors is Nbkg. The condition for the
correlations to have a negligible impact on our background
prediction is that the e terms be much smaller than N

AB
N

AB
=N

AB
:

Nbkg ¼
NAB N

AB

N
AB

þeN0PðBÞ 1þ
PðAjBÞ

PðAjBÞ

 !
�e2N0

PðBÞ

PðAjBÞ
1þ

PðAjBÞ

PðAjBÞ

 !
:

ð38Þ

These terms require opening the signal box to know the correct
values of the CSPs. We can, however, approximate these values
with less knowledge, under the assumption that the number of
events in the signal box is small:

PðBÞ ¼
NABþN

AB

N0
�

N
AB

N0
ð39Þ

PðAjBÞ

PðAjBÞ
¼

NAB

NB

N
AB

NB

�
Npred

N
AB

: ð40Þ
These approximations give us the first order correction:

Ce ¼ eNAB
1þ

Npred

N
AB

 !
: ð41Þ

Returning to our Toy model, we introduce a correlation between
the a and b variables in Background 1. We add a term linearly
dependent on b to a, and then scale a to keep it between 0 and 1
and to reduce the change in background due to the change in the
average value of a:

f ðaÞ ¼ ð1þe0Þ; aA ½e0b=ð1þe0Þ; ð1þe0bÞ=ð1þe0Þ�: ð42Þ

The variable e0 is the knob we use to tune the correlation. It is
closely related to the variable e that is defined in Eqs. (31) and
(32) as is shown in Fig. 5.

We show the predicted and observed background in Fig. 6. As
e0 increases the background in data increases, because the
correlation increases the average value a, while the predicted
background decreases (see Fig. 7).

In Fig. 6, we show the prediction with Ce added. It improves the
agreement for a fairly wide range of e.
6. Example from E391a

For a more realistic example, we discuss the use of this
technique in the first search for the rare kaon decay KL-p0p0nn
at E391a. E391a is dedicated experiment for the search for the
rare kaon decay KL-p0nn located at KEK. The experimental
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Table 4
Prediction of background events in different regions without correlation or

secondary background corrections.

Region N
AB

N
AB

N
AB

Prediction Data

Low PT 393 72 115 21.173.3 13

High Mass 46 9 4 0.7870.48 1

Signal 84 18 2 0.4370.32 1

Table 5
Values for the core neutron multiple background correction.

DA DB N1 N2 Correction

26.4% 8.6% (101.9710.2 71.05) (2.170.03 71.05) (0.0670.05)
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apparatus consists of a 4p hermetic photon veto system and an
array of CsI, an inorganic crystal scintillator, for signal detection.
The KL-p0p0nn decay has a Standard Model branching ratio of
ð1:470:4Þ � 10�13 [4]. The bifurcation method is to predict the
background to this mode from data.

The final state of KL-p0p0nn is four photons from the p0’s and
two unobservable n’s. Events are reconstructed by pairing the
photons and calculating the p0 decay vertices. The pairing with
the smallest separation between p0 vertices is selected. The signal
region is defined in three kinematical variables: the transverse
momentum of the p02p0 system, the invariant mass of the p02p0

system, Mp02p0 , and reconstructed decay vertex, Z.
The signal region is selected to avoid the two primary

background sources: KL-p0p0p0 decays and neutron interactions
with a membrane located downstream of the fiducial region. The
KL-p0p0p0 events have a mass peak below the KL mass and with
relatively low PT’s of under 100 MeV/c. Their decay vertices cover
the full range of the fiducial decay region. The neutron related
events are well separated in the decay vertex having a peak at the
membrane position, 50 cm downstream of the fiducial region. The
KL-p0p0nn signal box is defined as 100 MeV=coPT o200 MeV=c,
268 MeV=c2oMp02p0 o450 MeV=c2, 300 cmoZo500 cm. The
distribution of events in the PT-mass plane is shown in Fig. 8.

We divided our cuts into three groupings: the setup cuts, cut A

which contained most of the photon vetoes, and cut B which
contained primarily cuts on photon reconstruction quality in the
CsI array. Using Eq. (5), we first tested the method on regions
surrounding the signal box. We define a Low PT region with the
same bounds on Mp02p0 and Z as the signal region and PT

o100 MeV=c. The High Mass Region is defined with the same
bounds on PT and Z as the signal region and
450 MeV=c2oMp02p0 o550 MeV=c2. The results of this are shown
in Table 4. There is a significant discrepancy in the Low PT region,
this is due to neglecting the correlation.

We estimated the cut correlation on the KL-p0p0p0 back-
ground in its peak region using both data and Monte Carlo. The
value of e was found to be ð�0:04970:035Þ. We first apply
Eq. (41) on the Low PT region and find a correction of
�6:6774:81. This correction brings the prediction in Table 4 into
much better agreement with data. We next apply Eq. (41) to the
signal region and find a correction of ð�0:1270:12Þ events.

Low energy neutron interactions are difficult to simulate in
general and we had the additional difficulty of not knowing the
precise shape of the membrane in the beamline. Therefore, we
used data to estimate the level of neutron background. The value
of N2 was estimated by fitting the distribution events in the High
PT–High Z region, Z4500 cm and PT 4100 MeV=c. Events in this
region are predominately core neutron events. We applied a set of
loose cuts to ensure high statistics. We subtracted off the
contribution of the KL-p0p0p0 background using a Monte Carlo
prediction of their contribution under the loose set of cuts. The
fitted core neutron distribution was extended into the signal
region and the total number core neutron events in the signal
region was predicted from the distribution. Then the predicted
number of events in the signal region were scaled down using the
factor by which the population of events in the High PT–High Z

region were reduced. Using this procedure we estimate
N2 ¼ 2:1670:03stat:71:05syst:. The large systematic error comes
from the subtraction of the KL-p0p0p0 contribution in the High
PT–High Z region. The differences between the cut survival
probabilities for core neutron events and KL-p0p0p0 events
were found by comparing the difference in cut effectiveness
between the KL-p0p0p0 peak in the Low Mass–Low PT region and
the core neutron peak in the High Z region. The values which go
into the correction and the computed correction are shown in
Table 5.
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The KL-p0p0p0 decay has three ways in which it can cause
backgrounds depending on the number of photons lost through
veto inefficiency or fusion of photon clusters in the CsI. These
three channels are not separated in the signal space, so our
estimate of cut correlation includes contribution from these
multiple background types.

The statistical uncertainties on both the correlation and the
core neutron correction are large relative to their size. Therefore
we decided to use these values as estimates of the systematic
error made by neglecting the correlation and multiple background
corrections. This results in a background prediction of
0:4370:32stat:70:13syst:. Opening the signal box, we observed a
single event, consistent with our background prediction.
7. Discussion

The bifurcation analysis technique allows us to produce data
driven background predictions while still maintaining a blind
analysis. In this paper we have shown how to extend the
bifurcation analysis to the case of two background sources and
correlated cuts.

The correction for a second background source is effective for
any level of secondary background. It does require information
beyond which is available directly from a blind analysis. It
requires a combination of Monte Carlo information about the
relative strengths of the two backgrounds and how the cut
survival probabilities vary between the two backgrounds. It also
requires knowledge of N0, the number of events in the signal box
after the setup cuts.

Correlations between the two cuts cannot be handled as easily.
Even when the correlation between cuts is linear, the effects on
the background prediction are non-linear. Therefore, special care
must be taken when selecting the cuts for the bifurcation analysis
to avoid correlation.

One particular aspect of the impact of the prediction on the cut
correlation is its dependance on the value of N0. This leads to two
competing forces in optimizing the division of cuts into the setup
cuts and the bifurcation cuts. From the perspective of minimizing
statistical error in the bifurcation prediction, one would like a
large value for N0 with powerful cuts for cuts A and B, so that the
statistical errors on the terms of Eq. (5) are small. On the other
hand, a large N0 means the prediction is sensitive to small
correlations between the cuts.
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