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Plan of the talk

• Hydrodynamics

• Anomalies

• Gauge/gravity duality

• Hydrodynamics with anomalies

• (a simplified version of a complex story)



Bernoulli, “Hydrodynamica”,1738



Navier-Stokes equation

• Continuity equation
@⇢

@t
+r·(⇢v) = 0

Momentum conservation
@v

@t
+ (v ·r)v = �1

⇢
rP + ⌫r2v

(+ Energy conservation)

This simple set of equations lead to many complex physical 
phenomena



Hydrodynamic phenomena

(Van Dyke, Album of fluid motion)



Relativistic hydrodynamics

• The conservation of energy, momentum, baryon 
charge

rµT
µ⌫ = 0

“Constitutive relations”

rµj
µ = 0

~j = ⇢~v �D~r⇢

a similar equation for Tµ⌫

advection diffusion



Applications of relativistic 
hydrodynamics

astrophysics
(astro-ph/0111369) heavy ion collisions

(Bjorn Schenke)



Hydro: a classical theory

• Classical fluid even when constituents are quantum 
(quark gluon plasma for example): described by the 
same equations

• Quantum effects disappear when coarse grained 
over a large box

• Soft bosonic modes are classical

n(!) =
1

e!/T � 1
⇡ T

!



Two path to quantum 
hydrodynamics

• Path 1: started with a letter from Kapitza to 
Molotov (Prime Minister of the USSR) dated April 
6, 1939





Recently, while studying helium near 
absolute zero, I found a whole series of new 
phenomena, possibly shedding light on a most 
mysterious area of modern physics... I need 
a theorist's help... In the Soviet Union the 
theorist who knows the subject completely 
and whom I need is Landau, but he has been 
under arrest for a year...

Can you ask NKVD to speed up Landau's case?
If not, can we use his brain for scientific 
work while he is sitting in his cell?...



Landau 1941

• Landau, later Khalatnikov and others, constructed a 
hydrodynamic theory of superfluid helium

• Different from usual hydrodynamics because of 
spontaneous symmetry breaking due to Bose 
condensation

• SSB gives rise to a new hydrodynamic mode 
(superfluid velocity)



Path 2: anomalies

• Very recently (2007-now): quantum effects 
discovered in hydrodynamics of normal fluids

• related to quantum anomalies

• It was almost an accidental discovery, made 
through gauge-gravity duality



Beginning: π0 decay

By using the method of evaluation which has 
been applied by Schwinger…we have obtained 
the convergent but non-gauge covariant result 
for the γ decay of neutral meson….Thus, in the 
present state of the field theory, we cannot give 
an unambiguous life-time for neutral meson.

:J47 

On the r-Decay of Neutral Meson. 

Hiroshi FUKUDA and Yoneji 

P1tJ'sics lllstitzete, T04")'O 

(Reccived May 16, 1949) 

Introduction. 

Recently Tomonagall and Schwinger!) have independently developed a covari-
ant formulation of quantumelectrodynamics (super-many-time theory), and have 

applied it to the explanation of the Lamb shift in the hydrogen atom 
.and the anomalolls magnetic moment of the They have shown that, 
altbough the present theory of fields, in general. gives infinte answers to such 
fiel(l reaction problems, since it cannot be formulated in a Lorent:!.- and gauge-
covariant way without introduction of the singular delta function of Jord'l11 and 
Pauli, it is nevertheless possible to avoid the divergences by amalgamating them 
into the mass and charge, and that the remaining finite term can well account 
for the experimental But there remains the qucst;on, whether or not 
such finite term; as is separated from infinity, can be free from any ambiguity 
arising from the pathological character of delta function of Jordan and 1 auli. 

One typical example of the appearance of such an ambiguity is the photon 
self energy. As first pointed out by Schwinger,!) the photon self cnergy should 
be zero from the covariant point of view,. while, completely against 
Schwinger's prediction, the recent calc:ulation by Wcntzel4) leads to a finite but 
non-gauge covariant result for the photon self energy. It is evidcnt that this 
inconsistent result comes from the mathematical difficulty of obtaining a definite 
expression for the singularity of the light cone of Jordan-Pauli's delta function. 

A very similar situation is also encountded in the T decay of neutral meson. 
By using the method of evaluation which has been applied by Schwinger> to the 
calculation of the anomalous magnetic moment of the electron, we have obtained 
the convergent but non-gauge covariant result for the T decay of ncutral meson. 
Further our result is with the recent discussions of Dyson, Sawada 
._--------

1) S. Tomonaga: Prog. Theor. Phys. I, (1946) 27. 
Koba, Tati and Tomonaga: Prog. Thcor. J'hys. 2, (1947) 101 and 198. 

2) J. Schwinger: Phys. Rev. 74, (1948) 1439; 76,(1949) 651 and his unpublished man serit'li. 
3) Z, Koba and S. Tomonaga: Prog. Theor. Phys. 2, (1948) ·218, 

T. Tati and S. Tomonaga: Prog. Thenr. Phys. I, (1948) 391. 
H. }<'ukuda, Y. Miyamoto and" S. Tnmlmaga: ibid. in press. 

4) G. Wentzel: Phys. Rev.. 74, (1948) 1070. 
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On the Use of Subtraction Fields and the Lifetimes of Some Types of Meson Decay
J. STEINBERGER

The Institute for Agoenccd St cdy, Princeton, Peur Jersey
(Received June 13, 1949)

The method of subtraction 6elds in current meson perturbation theory is described, and it is shown that
it leads to 6nite results in all processes. The method is, however, not without ambiguities, and these are
stated. It is then applied to the following problems in meson decay: Decay of a neutral meson into two and
three p-rays, into a positron-electron pair, and into another neutral meson and photon; decay of a charged
meson into another charged meson and a photon, and into an electron (or p,-meson) and neutrino. The
lifetimes are tabulated in Tables I, II and III. The results are quite di8erent from those of previous calcu-
lations, in all those cases in which divergent and conditionally convergent integrals occur before subtraction,
but identical whenever divergences are absent. The results are discussed in the light of recent experimental
evidence.

I. INTRODUCTION
ECENTI.Y Pauli and Villars' have shown that it
is possible in electrodynamics to make the self

energy of the light-quantum zero, by the use of some
formal subtraction methods. One of these may most
easily be understood as consisting in the introduction
of several fictitious subtraction helds in addition to the
electron-positron field. The idea, which is due to Rivier
and Stucklberg, ' is the following: The matrix element
contains an infinite integral over the momenta of the
intermediate virtual electron-positron pairs which are
responsible for the self energy. To this matrix element
are added and from it subtracted several others for the
same process, in which however the virtual pairs have
different masses. Since the infinities have the same
structure, it is possible to choose the number and
masses of the additional helds so as to make the ex-
pression converge. In the case of the photon self-energy,
the conditions which are necessary to bring convergence
are also sufricient to make it vanish. One may regard
this procedure as a subtraction method; no real
processes involving these additional fictitious fields,
such as their self energy, or scattering are considered,
and one requires the masses of the extra fields to be
very large. It is also possible to treat the other infinite
quantities' in electrodynamics, the electron self-energy,
and the charge renormalizations in the same way.
However, this is academic, since one may disregard
them, finite or infinite. In meson theories this is not so.
Divergencies of a sort that cannot be removed by
name-calling occur, 4 especially the decay of rgesons into
other particles via an intermediate Fermi-Dirac (nu-
cleon) field. We discuss these processes in this paper.

Present address: University of California, Berkeley, California.
~%. Pauli and F. Villars, Rev. Mod. Phys. 21, 433 (1949).' D. Rivier and E. C. G. Stiicklberg, Phys. Rev. 74, 218, 986

(1948).
3 It has been shown by F. J. Dyson, Phys. Rev. 75, 486 (1949),

that all the in6nite quantities in the perturbation theory of
quantum electrodynamics are either of the form of a correction
to the mass of the electron or to its charge.
4 Divergences of this sort have been exhibited by K. M. Case,

Phys. Rev. 75, 1440 (1949}, in the calculation of the magnetic
moment of nucleons due to their tensor coupling to a vector meson
field.

II. SUBTRACTION FIELDS

Since it is very convenient in these and other held
theoretical problems to use the Feynman diagrams, ' the
reader is assumed to be familiar with this mode of
computation. It is equivalent to the older methods. For
purposes of illustration, consider the disintegration of
a scalar meson into two lighter scalar mesons, via an
intermediate neutron field, and the scalar interaction.
The Feynman diagrams are as follows:
The initial meson, of four-momentum k makes a

neutron-anti-neutron pair; then either the neutron or
the anti-neutron can radiate the meson ki, before the
particles annihilate with the production of the other
meson k.. The two matrix elements are

gg p dP
(SExEiiEi2) & & (2n.)4

L(pi+ki )vi+im)LP r +im]L(p k~ )r +™]X—
(p'+m') [(p+ki)'+m'jL(p —k2)'+m']

+same term with ki, k2 interchanged

gg" I. d'P .
(im)

(2EiEi,iEi, 2) & ~ (2n)'

E3P'+2p(k, k2) m—' ki—k2)—
X
(p'+m') $(p+ ki) '+m' jDp k,)'+m—'j

The integral is logarithmically divergent. However, if
it is now regarded as a function of m, the virtual
nucleon mass, and we subtract and add other nucleon
fields of much larger mass, m; (mo is the mass of the
neutron), the sum will be finite provided P;m,C,=O.
C,=+1 and indicates whether the ith held is to
be added or subtracted. However, there will be a term
left of the form P; C,m; lnm;, which becomes infinite as
the m, (i/0) are made large, unless it is required that
P C,m, lnm;=const. This constant seems to be arbi-
trary, and as long as it is so, the subtraction is not

~ F. J. Dyson, Phys. Rev. 75) 486 (1949).
ii80

 “...The method [Pauli-Villars] is, however, not without ambiguity......”



Puzzle of π0 decay

Z 1

�1
dx [f(x+ a)� f(x)] =

Z 1

�1
dx [af 0(x) +O(a2)] = a[f(1)� f(�1)]

Conditionally convergent int
 Result depends on the way UV 
cutoff is imposed



Puzzle of π0 decay

Z 1

�1
dx [f(x+ a)� f(x)] =

Z 1

�1
dx [af 0(x) +O(a2)] = a[f(1)� f(�1)]

x ! x� a

Z 1

�1
dx [f(x)� f(x)] = 0

Conditionally convergent int
 Result depends on the way UV 
cutoff is imposed



Anomaly

• The key to the understanding of the pion decay 
puzzle was identified by Adler, Bell, Jackiw (1969)

• In massless electrodynamics, numbers of left- and 
right-handed electrons are not conserved 
separately in quantum theory



Chirality
• Consider a massless spin-1/2 particle: 2 chiralities

s

p p
s

left right

L
L

γ

R
R

γ

Chirality is preserves in classical theory
But chirality is not conserved in quantum theory: anomalies



Landau levels

• To understand anomalies, we start with quantum 
mechanics of a massless fermion in a magnetic field

B



Massless fermion in a magnetic field

R n=
0 L n=0

n=1

n=2

n=-1

n=-2

E

pz

E2 = p2z + 2nB



Anomalies

pz

L R

Turn on electric field for some duration of time

B

ε
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Anomalies

pz

L R

Turn on electric field for some duration of time

B E

ε

d

dt
(NR �NL) � E · B @µj

5µ =
e2

4⇡2
~E · ~B



Hilbert’s hotel



Hilbert’s hotel

L R



Hilbert’s hotel

L R

Is ∞-∞=0 or ∞-∞=4?



Hilbert’s hotel

L R

Is ∞-∞=0 or ∞-∞=4?

How to get the right answer is what the understanding of 
anomaly provides



Anomalies and hydrodynamics
• A full understanding of anomalies in quantum field 

theory was achieved ~ 1980s

• In general not all global symmetries can be gauged at 
the same time (coupling to nondynamical 
background fields is OK)

• In the Standard Model: anomaly cancellation for 
gauged current, but e.g. baryon number is not 
exactly conserved

Hydrodynamics with anomalous symmetries? 
(neutrino gas): difficult using traditional methods

a convenient technique for combining hydro and 
anomalies: gauge-gravity duality



Gauge/gravity duality (“holography”)

Maldacena (1997): duality between QFT and string theory

The Gauge/Gravity Duality
Maldacena : stack of N D3-branes in type IIB string theory can be described in
two different pictures:

As a quantum field theory
describing fluctuations of the
branes: N = 4 super-Yang-Mills
theory

As string theory on a a curved
spacetime called AdS5×S5

ds2 =
r2

R2
(−dt2+dx2)+

R2

r2
dr2+R2dΩ2

5

{

N

=

GSI 2009 – p.21/42

N=4 super Yang-Mills
theory

string theory in
AdS5xS5 space

ds2 =
r2

R2
(�dt2 + d�x2) +

R2

r2
dr2 + R2d�2

5



Duality as a tool for QFT

• Gauge/gravity duality is particularly useful in the 
strong coupling regime of QFT 

Mapping of parameters

Rl s

g2Nc =
R4

ℓ4s

g2Nc ≫ 1:

field theory cannot be solved by perturbation theory
string theory dual =⇒ Einstein’s general relativity!

GSI 2009 – p.23/42

Mapping of parameters

Rl s

g2Nc =
R4

ℓ4s

g2Nc ≫ 1:

field theory cannot be solved by perturbation theory
string theory dual =⇒ Einstein’s general relativity!

GSI 2009 – p.23/42

g2Nc >>1: string theory becomes gravity

Difficult regime in field theory = easy in string theory



Gauge-gravity duality at 
finite temperature

• Soon gauge/gravity duality was generalized to finite 
temperature

• Quark-gluon plasma (in N=4 SYM theory) = black 
hole in AdS space

• Entropy of the quark gluon plasma = entropy of 
black hole



Hydrodynamics from BHs

• Around 2001 connection between black hole physics and 
hydrodynamics was found Kovtun, Policastro, Starinets, Son...

• Dynamics of black hole horizon is described by fluid 
dynamic equation: fluid-gravity correspondence

• Allow a simple incorporation of anomaly in 
hydrodynamics

S =
1

8�G

�
d5x

�
�g

�
R� 12� 1

4
F 2

AB +
4�

3
�LABCDALFABFCD

�



Surprise: two new effects

Erdmenger, Haack, Kaminski, Yarom (2008)

Banerjee, Bhattacharya, Bhattacharyya, Dutta, Loganayagam, Surówka (2008)

Chiral magnetic
effect (CME)

Chiral vortical
effect (CVE)

~j5 = ⇢5~v �D~r⇢5 +⇠B ~B + ⇠~r⇥ v

diffusionadvection



Chiral separation by rotation?



Chiral separation by rotation?



Chiral separation by rotation?
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Chiral separation by rotation?
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Chiral separation by rotation?



Chiral separation by rotation?



Chiral separation by rotation?

?



A stronger objection

• There is no mention of a this term in volume 6 of 
Landau and Lifshitz (Fluid Mechanics) and in any of 
the 10 volumes !



A stronger objection

• There is no mention of a this term in volume 6 of 
Landau and Lifshitz (Fluid Mechanics) and in any of 
the 10 volumes !



The entropy argument
• The hydrodynamic equation is not time-reversal 

invariant

• There must exist an entropy, expressible in terms 
of hydrodynamic variables (local velocity, T, etc.) 
which does not decrease with time

• This condition seems to allows for only shear 
viscosity, bulk viscosity, thermal conductivity 
(charge diffusion cofficient) independent of 
whether spatial parity is broken or not

• Thus sugar in the cup would not separate 



Resolution
•  But one can check from the positivity of entropy 

production that

• vorticity-induced current is not only allowed, but is 
required if anomaly is present

• the coefficient governing the chiral vortical effect is 
related to anomalies Surówka, DTS 2009

The cousin chiral magnetic effect can be explained in 
picture

anomaly coefficient

+ · · ·⇠
axial

= Cµ2



L R



L R

j =
e2

4⇡2
(µR � µL)B

µR

µL

valid also with interactions



Chiral magnetic effect at RHIC?

Abelev et al. PRL 2009 (arxiv:0909.1739)

π+s like to travel in the same directions, π+ and π- in opposite 
directions



Chiral magnetic effect in 
heavy ion collsions?

• If the quark gluon plasma was created with an 
asymmetry in the number of left- and right-handed 
quarks (either sign)

• then the magnetic field leads to an electric current 
and may lead to observed effect

• (However, alternative explanations exist)



Dirac or Weyl semimetals

• Solid-state materials with energy spectrum of 
massless Dirac fermions

• Effects of anomalies may be visible in transport 

4
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FIG. 1: Surface states of a Weyl semimetal. a)The surface
states of a Weyl semimetal form an arc connecting the pro-
jections of the two Weyl points to one another. Points on
the Fermi arc can be understood as the edge state of a two-
dimensional insulator, and the Berry flux of the Weyl points
ensures that either the insulators represented by the red or
blue planes are integer Hall states, which have edge modes.
Here we depict the former. b) A graph of the dispersion of
the surface modes (the pink plane) and how this joins to the
bulk states (represented by solid red and blue cones)5.

in momentum space surrounding one of the Weyl points
has a Berry flux through it. Such a surface therefore
defines a two-dimensional insulator with a Hall conduc-
tance, which must have edge states, and for the right
geometry these will correspond to real edge states of the
three dimensional crystal.

Let us consider a crystal that is cut parallel to the xy-
plane. For a clean surface, momentum is conserved, and
the wave functions can be taken to have a definite crystal
momenta k? = (kx, ky) in the direction parallel to the
surface. Let us in particular fix kx, so that  (x, y, z) =
eikx

xfk
x

(y, z). The Hamiltonian then reduces to a two-
dimensional problem, di↵erent for each given momentum,

Hk
x

fk
x

(y, z) = ✏fk
x

(y, z) (8)

This describes a 2D system with an edge, corresponding
to the top surface of the original semimetal. If two cross-
sections contain a monopole between them, then there is
a non-zero net flux through the two of them. Thus the
Chern numbers di↵er by 1, and so one of the two systems
at least is a 2D quantum Hall state. For example, in
Fig. 1a the planes in between the two monopoles all have
Chern number 1. Thus there is an edge state for each
fixed value of kx. Putting all these edge states together,
we find that there is a Fermi arc connecting the two Weyl
points.

That completes the argument for the surface states.
There is another connection between Weyl semimetals
and topological insulators in a di↵erent dimension: this
one appears on increasing the dimension and considering
4+1D topological insulators (which exist in the absence

of any symmetry). The boundary states of these phases
correspond to Weyl fermions, i.e. a single Weyl point.
Since this is the boundary of a four dimensional bulk,
the fermion doubling theorem does not apply. This im-
mediately allows us to draw certain physical conclusions.
Disorder on the surface of a 4D topological insulator will
not localize the surface states. Hence, if we have a 3D
Weyl semimetal with disorder that scatters particles only
within a node, we may conclude that this will not lead to
localization.

4. The Chiral Anomaly

We now consider “topological responses” of Weyl
semimetals.
At first, it may seem that the number of particles at

a given Weyl point has to be conserved, as long as there
is translational symmetry. Yet there is an “anomaly”
that breaks this conservation law. The conservation of
momentum implies that the particles cannot scatter be-
tween the two Weyl points, and hence they can be de-
scribed by separate equations. The e↵ective description
of either one in an electromagnetic field is

HR/L = ⌥i~v †
L/R� · (r� ieA

~

) L/R, (9)

where we have assumed the velocity to be isotropic. Re-
sponse to a low-frequency electromagnetic field can be
calculated from these relativistic equations, using meth-
ods from field theory. The first step is to add in a cut-o↵
to give a finite answer. This cut-o↵ does not respect the
conservation law, and so it is found that the charge is not
conserved:

@

@t
(nR/L(r)) = ± e2

h2

E ·B. (10)

This is known as the Adler-Bell-Jackiw anomaly in field
theory.
Condensed matter derivation of the anomaly–Consider

a Weyl semimetal with cross-sectional area A and length
Lz in an electric and a magnetic field applied along z.
The magnetic field causes the electron states to split
into a set of Landau levels. As opposed to the two-
dimensional case, each Landau level is a one-dimensional
mode dispersing along z. The zeroth levels are the most
interesting. They provide one-dimensional chiral modes
with the linear dispersion ✏R/L = ±vpz for the right and
left-handed species. These modes can be pictured as chi-
ral wires parallel to the magnetic field, with a density
per unit area of B/�

0

where �
0

= h
e is the flux quan-

tum. The derivation uses the fact that lowest Landau
levels in a 2D Dirac Hamiltonian correspond to an eigen-
state of �z, which sets the velocity of z direction prop-
agation. The other modes do not cross through zero,
so they cannot respond much to external fields. Thus,
the three dimensional anomaly reduces essentially to the
one-dimensional one.

(Turner, Vishwanath)
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@

@t
(nR � nL) = E ·B +

nR � nL

⌧

j ⇠ (µR � µL)B ⇠ ⌧B2E

enhancement of current 
negative magnetoresistance

(DTS, Spivak 2012; Burkov 2014)

L R



Experimental observation 
of anomaly in solids

4

D

FIG. 5: Panel A: Sketch of the Landau levels (LL) in a
Weyl semimetal showing chiral states in the lowest LL with
opposite velocities and chiralities (arrows) k B. An E-field k
B breaks chiral symmetry and leads to an axial current. Panel
B shows the triangle anomaly that ruins the conservation of
chiral charge. Panel C: The T dependence of the resistivity ⇢

in B = 0 and Hall coe�cient RH in Na3Bi. RH is measured
in B <2 T applied k c. At 3 K, RH corresponds to a density
n = 1.04⇥1017 cm�3. The inset shows the contact labels and
the x and y axes fixed to the sample. Panel D: Curves of the
longitudinal magnetoresistance ⇢xx(B, T ) at selected T from
4.5 to 300 K measured with B k x̂ and I applied to (1,4).
The steep decrease in ⇢xx(B, T ) at 4.5 K reflects the onset
of the axial current in the lowest LL. Adapted from Xiong et

al. [27].

the chiral conductivity [6]

�� =
e2

4⇡2~c
v

c

(eBv)2

✏2F
⌧v, (2)

where ⌧v is the intervalley life-time and ✏F the Fermi
energy.

IV. DIRAC SEMIMETAL NA3BI

The Dirac semimetal Na3Bi grows as mm-sized, deep-
purple, plate-like crystals with the largest face paral-
lel to the a-b plane (ĉ is normal to the planes) (Fig.

4a,b). We annealed the crystals for 10 weeks before
opening the growth tube. Details of the growth and
characterization are reported in Kushwaha et al. [28].
To avoid oxidation, crystals were contacted using silver
epoxy in an Argon glove box, and then immersed in para-
tone in a capsule before rapid cooling. In Na3Bi, the
Dirac nodes are located at the wave vectors (0, 0,±kD)

with kD ' 0.1 Å
�1

[19, 20]. Initial experiments in our
lab [26] on samples with a large Fermi energy ✏F (400
mV) showed only a positive MR with the anomalous B-
linear profile reported in Cd3As2 [25].
Recent progress in lowering ✏F has resulted in sam-

ples that display a non-metallic resistivity ⇢ vs. T profile
and a low Hall density n ⇠ 1 ⇥ 1017 cm�3 (Fig. 5C).

We estimate the Fermi wavevector kF = 0.012 Å
�1

(8⇥
smaller than kD). The unusual profiles of ⇢ and the Hall
coe�cient RH in Panel C imply the zero-B energy spec-
trum shown in Panel B. Below ⇠10 K, the conductivity
is largely due to electrons in the conduction band with
electron mobility µ ⇠ 2,600 cm2/Vs). Because the energy
gap is zero, holes in the valence band are copiously ex-
cited even at low T . As T rises above 10 K, the increased
hole population leads to a steep decrease in ⇢ and an in-
version of the sign of RH at 62 K. From the maximum
in RH at 105 K, we estimate that ✏F ⇠ 3kBT ⇠ 30 mV.
As shown in Fig. 5D, the resistivity ⇢xx in a longitudinal
field (B||I, the current) displays a remarkable peak at 4.5
K corresponding to a large negative MR (the resistance
measured is R14,23 (I applied to contacts 1 and 4, and
voltage measured between contacts 2 and 3; the inset in
Fig. 3C shows the contact labels and the x and y-axes).
Raising T above ⇠100 K suppresses the peak. The small
density n implies that ✏F enters the lowest (N = 0) LL
at B ⇠ 4-6 T.

V. A NARROW CURRENT PLUME

The axial current is predicted to be large when B is
aligned with E. A valuable test then is the demonstra-
tion that, if E is rotated by 90�, the negative magne-
toresistance (MR) pattern rotates accordingly, i.e. the
axial current maximum is selected by B and E, rather
than being pinned to a crystal axis, even in the weak-B
regime.

To test the anisotropy, we rotate B in the x-y plane
while still monitoring the resistance R14,23. Figure 6A
shows the curves of the resistivity ⇢xx vs. B measured
at 4.5 K at selected � (the angle between B and x̂). The
MR is positive for � = 90� (B||ŷ), displaying the nominal
B-linear form observed in Cd3As2 [25] and Na3Bi [26]
with B||c. As B is rotated towards x̂ (� decreased),
the MR curves are pulled towards negative values. At
alignment (� = 0), the longitudinal MR is very large and
fully negative (see SI for the unsymmetrized curves as
well as results from a second sample).

We then repeat the experiment in situ with I applied
to the contacts (3, 5), so that E is rotated by 90� (the

FIG. 2: Magnetoresistance in field parallel to current ( ~B k a) in ZrTe5. (a) MR at various

temperatures. For clarity, the resistivity curves were shifted by 1.5 m⌦cm (150 K), 0.9 m⌦cm

(100 K), 0.2 m⌦cm (70 K) and �0.2 m⌦cm (5 K). (b) MR at 20K (red symbols) fitted with the

CME curve (blue line); inset: temperature dependence of the fitting parameter a(T ) in units of

S/(cm T2).

observed resistivity can be fitted with a simple quadratic term (Supplementary materials,

Fig. S1). This term is treated as a background and subtracted from the parallel field

component for all MR curves recorded at T  100 K.

A negative MR is observed for T  100 K, increasing in magnitude as temperature

decreases. We found that the magnetic field dependence of the negative MR can be nicely

fitted with the CME contribution to the electrical conductivity, given by �CME = �0 +

a(T )B2, where �0 represents the zero field conductivity. The fitting is illustrated in Fig.

2(b) for T = 20 K, with an excellent agreement between the data and the CME fitting

curve. At 4 Tesla, the CME conductivity is about the same as the zero-field conductivity.

At 9T, the CME contribution increases by ⇠ 400%, resulting in a negative MR that is

much stronger than any conventional one reported at an equivalent magnetic field in a

non-magnetic material.

At very low field, the data show a small cusp-like feature. The origin of this feature is not

completely understood, but it probably indicates some form of anti-localization coming from

the perpendicular ( ~B k b) component. Inset in Fig. 2(b) shows the temperature dependence

of the fitting parameter a(T ), which decreases with temperature faster than 1/T , again

consistent with the CME.
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Unexplained: strong dependence on the angle between 
electric and magnetic fields



Outlook and conclusions

• Interesting mathematical structures of hydrodynamic 
theories with anomalies 

• Boltzmann equation with anomaly: role of the Berry 
phase Chen, DTS, Stephanov, Yee, Yin

• First found in string theory, applications in heavy-ion 
and condensed matter physics

• Fruitful cross-fertilization between subfields of 
physics


