The Metric Space of Collider Events

Patrick T. Komiske III

Massachusetts Institute of Technology Center for Theoretical Physics

with Eric Metodiev and Jesse Thaler, <u>1902.02346</u>, to appear in PRL

Particle Physics Seminar – University of Chicago

May 29, 2019

When are two events similar?

The Energy Mover's Distance

Particle Physics Applications

When are two events similar?

The Energy Mover's Distance

Particle Physics Applications

Events at the Large Hadron Collider

Jets (collimated sprays of color-neutral particles) are ubiquitous at high-energy colliders

CMS hadronic $t\overline{t}$ event

ATLAS high jet multiplicity events

Events in Detectors

Information synthesized from numerous detector subsystems each with different resolutions and idiosyncrasies

Event Formation in Theory

Hard collision

Good understanding via perturbation theory

Fragmentation

Semi-classical parton shower, effective field theory

Hadronization

Poorly understood (non-perturbative), modeled empirically

Fragmentation partons @ @ @ d ...

00000

Cartoon of jet formation as a multi-scale process

Hadronization

hadrons $\pi^{\pm}K^{\pm}$...

Collision

Detection

Events in Theory vs. Experiment

What information is both theoretically and experimentally robust?

Theoretically and Experimentally Robust Information

Infrared and Collinear Safe Information

Infrared (IR) safety – observable is unchanged under addition of a soft particle

Collinear (C) safety – observable is unchanged under a collinear splitting of a particle

Theoretically

QCD has soft and collinear divergences associated with gluon radiation

$$dP_{i \to ig} \simeq \frac{2\alpha_s}{\pi} C_a \frac{d\theta}{\theta} \frac{dz}{z} \qquad \qquad C_q = C_F = 4/3$$

$$C_g = C_A = 3$$

Experimentally

IRC safety is a statement of *linearity* in energy and *continuity* in geometry

[Sveshnikov, Tkachov, <u>hep-ph/9512370</u>; Tkachov, <u>hep-ph/9601308</u>;

Cherzor, Sveshnikov, <u>hep-ph/9710349</u>]

Events as Distributions of Energy

Energy flow distribution fully captures **IRC**-safe information

Patrick Komiske – The Metric Space of Collider Events

When are two events similar?

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Particle Physics Applications

When are two events similar?

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Particle Physics Applications

The Earth Mover's Distance (EMD)

A metric on normalized distributions in a space with a ground distance measure

symmetric, non-negative, triangle inequality, zero iff identical

The minimum "work" (stuff x distance) required to transport supply to demand

Related to optimal transport theory – commonly used as a metric on the space of images [Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

The Earth Mover's Distance (EMD)

A metric on normalized distributions in a space with a ground distance measure

symmetric, non-negative, triangle inequality, zero iff identical

The minimum "work" (stuff x distance) required to transport supply to demand

Related to optimal transport theory – commonly used as a metric on the space of images [Peleg, Werman, Rom, IEEE 1989; Rubner, Tomasi, Guibas, ICCV 1998, ICJV 2000; Pele, Werman, ECCV 2008; Pele, Taskar, GSI 2013]

The Energy Mover's Distance (EMD)

EMD between energy flows defines a metric on the space of events

Earth Mover's Distance for the Connoisseur

p-Wasserstein distance is a metric on probability distributions

Wasserstein Generative Adversarial Networks

[Arjovsky, Chintala, Bottou, <u>1701.07875</u>; in particle physics:

- Erdmann, Geiger, Glombitza, Schmidt, <u>1802.03325</u>
- Erdmann, Glombitza, Quast, 1807.01954]

Wasserstein(-Wasserstein) Autoencoders

[Tolstikhin, Bousquet, Gelly, Shoelkopf, <u>1711.01558</u>] [Zhang, Gao, Jiao, Liu, Wang, Yang, <u>1902.09323</u>]

When are two events similar?

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Quantifies the difference in energy flow between events

Particle Physics Applications

When are two events similar?

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Quantifies the difference in energy flow between events

Particle Physics Applications

Patrick Komiske – The Metric Space of Collider Events

Current – Jet Classification by Nearest-Neighbor Density Estimation

[PTK, Metodiev, Thaler, <u>1902.02346;</u>

Patrick Komiske – The Metric Space of Collider Events

comparison to Thaler, Van Tilburg, 1011.2268, 1108.2701; PTK, Metodiev, Thaler, 1712.07124, 1810.05165;

T

[PTK, Metodiev, Thaler, 1902.02346]

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to IRC-safe observables

Т

$$\operatorname{EMD}(\mathcal{E}, \mathcal{E}') \geq \frac{1}{RL} \left| \sum_{i} E_{i} \Phi(\hat{p}_{i}) - \sum_{j} E_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\mathcal{E}) - \mathcal{O}(\mathcal{E}') \right|$$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

[PTK, Metodiev, Thaler, <u>1902.02346]</u>

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to

IRC-safe observables

 $\operatorname{EMD}(\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{E}}') \geq \frac{1}{RL} \left| \sum_{i} \boldsymbol{E}_{i} \Phi(\hat{p}_{i}) - \sum_{j} \boldsymbol{E}_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\boldsymbol{\mathcal{E}}) - \mathcal{O}(\boldsymbol{\mathcal{E}}') \right|$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

[PTK, Metodiev, Thaler, <u>1902.02346]</u>

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to

IRC-safe observables

 $\operatorname{EMD}(\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{E}}') \geq \frac{1}{RL} \left| \sum_{i} \boldsymbol{E}_{i} \Phi(\hat{p}_{i}) - \sum_{j} \boldsymbol{E}_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\boldsymbol{\mathcal{E}}) - \mathcal{O}(\boldsymbol{\mathcal{E}}') \right|$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

[PTK, Metodiev, Thaler, <u>1902.02346]</u>

Mathematics

I-Wasserstein metric bounds the difference in expectation values between distributions

Physics

Events close in EMD are close according to

IRC-safe observables

 $\operatorname{EMD}(\boldsymbol{\mathcal{E}}, \boldsymbol{\mathcal{E}}') \geq \frac{1}{RL} \left| \sum_{i} \boldsymbol{E}_{i} \Phi(\hat{p}_{i}) - \sum_{j} \boldsymbol{E}_{j}' \Phi(\hat{p}_{j}') \right| = \frac{1}{RL} \left| \mathcal{O}(\boldsymbol{\mathcal{E}}) - \mathcal{O}(\boldsymbol{\mathcal{E}}') \right|$

via Kantorovich-Rubinstein duality

Additive IRC-safe observable

Future – Optimizing Pileup Removal

PileUp Mitigation with Machine Learning (PUMML)

PUMML with jet images

- pixel-based custom loss function
- compared specific IRC-safe observables

PUMML with EMD?

- no pixelation, automatic loss function
- related to all IRC-safe observables

(Event) Space Exploration

Visualizing the Metric Space of W Jets

Embed high-dimension manifold in low-dimensional space?

W Jet

Constraints: W Mass and ϕ = 0 preprocessing

t-Distributed Stochastic Neighbor Embedding

[L. van der Maaten, G. Hinton, JMLR 2008]

Visualizing the Metric Space of W Jets

Embed high-dimension manifold in low-dimensional space?

W Jet 1-z

Constraints: W Mass and ϕ = 0 preprocessing

t-Distributed Stochastic Neighbor Embedding

Manifold Dimensions of Event Space

Manifold Dimensions of Event Space

Manifold Dimensions of Event Space

Quark and Gluon Correlation Dimensions

Visualizing Jets with CMS Open Data

CMS opendata

EMD: 123.3 GeV

R

R/2

CMS 2011 Open Data

CMS 2011 Simulation

Pythia 6 Generation

PRELIMINARY

 10^{2}

0

Jet 2

Jet 1

PRELIMINARY

R

R/2

Identifying Representative Jets

medoid: element selected to best represent a set of elements k-medoids: k clusters to minimize total distance of points to medoids

33

Identifying Representative Jets

medoid: element selected to best represent a set of elements k-medoids: k clusters to minimize total distance of points to medoids

When are two events similar?

IRC-safe energy flow is theoretically and experimentally robust

The Energy Mover's Distance

Quantifies the difference in energy flow between events

Particle Physics Applications

Classification, quantifying modifications, understanding observables, exploring and visualizing event space

Further Directions

Experimental

Quantify (or even mitigate?) pileup/detector effects Non-parametric density estimates (unfolding?) Automated data compression (triggering?)

Theoretical

Define new observables with EMD? Precision QCD calculations of event space geometry? Event Mover's Distance between ensembles?

Algorithmic

Loss function for modern ML in particle physics? Metric trees to turn $O(N^2)$ into $O(N \log N)$?

EnergyFlow Python Package

https://energyflow.network

Parallelized EMD calculations via the Python Optimal Transport library

Keras implementations of EFNs, PFNs, DNNs, CNNs, efficient EFP computation

Several detailed <u>examples</u> and <u>demos</u> for common use cases and visualization procedures

Additional Slides

Boosted W Jets

Abstract space of W jets

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

Boosted W Jets

Gray contours represent the density of jets

Each circle is a particular W jet

Abstract space of W jets

[PTK, Metodiev, Thaler, <u>1902.02346</u>]

BOSTON 2019

[BOOST 2019, July 22-26, MIT]

Phenomenology | Reconstruction | Searches | Algorithms | Measurements | Calculations Modeling | Machine Learning | Pileup Mitigation | Heavy-Ion Collisions | Future Colliders