

Kaon Physics at CERN with the NA62 Experiment

Giuseppe Ruggiero (University of Florence - Italy) PP Seminar, University of Chicago 17/05/2021

this Seminar (an experimental view)

K decays & SM violation (LU test, LFV/LNV, exotics) @ CERN

Rare Kaon Decays and CKM

Rare Kaon Decays and CKM

$K \rightarrow \pi \nu \overline{\nu}$: the Subject

• FCNC loop processes: s→d coupling and highest CKM suppression

- Very clean theoretically: SD dominated. Hadronic matrix element $\propto \mathcal{B}(K_{l3})$ (precisely measured)
- **SM predictions** [Buras et al. JHEP 11 (2015) 33]

$$\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^\circ}\right)^{0.74} = (8.4 \pm 1.0) \cdot 10^{-11}$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^2 \left(\frac{|V_{cb}|}{0.0407}\right)^2 \left(\frac{\sin \gamma}{\sin 73.2^\circ}\right)^2 = (3.4 \pm 0.6) \cdot 10^{-11}$$

$K \rightarrow \pi \nu \overline{\nu}$: the Subject

• FCNC loop processes: s→d coupling and highest CKM suppression

• Very clean theoretically: SD dominated. Hadronic matrix element $\propto \mathcal{B}(K_{l3})$ (precisely measured)

• <u>Experimental status</u>

$$\begin{split} K^+ \to \pi^+ \nu \bar{\nu} & \text{BNL E787/E949 (1995-2002)} & \mathcal{B} = \left(1.73^{+1.15}_{-1.05}\right) \times 10^{-10} \text{ [Final, all data]} & \text{PRD 77, 052003 (2008); PRD 79, 092004 (2009)} \\ & \text{CERN NA62 (2016 - present)} & \mathcal{B} < 1.78 \times 10^{-10} \text{ 90\% CL [2016-17 data]} & \text{PLB 791, 156 (2019); JHEP 11, 042 (2020)} \\ & \text{this seminar [2016-17-18 data]} & \text{this seminar [2016-17-18 data]} & \text{this seminar [2016-17-18 data]} & \text{PRD 81, 072004 (2010)} \\ & \text{JPARC KOTO (2012 - present)} & \mathcal{B} < 3.0 \times 10^{-9} \text{ 90\% CL [2015 data]} & \text{PRL 122, 021802 (2018)} \\ & \mathcal{B} < 4.9 \times 10^{-9} \text{ 90\% CL [2016-17-18 data]} & \text{PRL 126, 121801 (2021)} & \text{PRL 126, 12180$$

$K \rightarrow \pi \nu \overline{\nu}$: the Plot

- High sensitivity to NP (non MVF): significant variations wrt SM possible
- Model-dependent correlations of possible variations of K^+ and K_L BR
- Weak constraints from other flavour observables

~200 participants: Birmingham, Bratislava, Bristol, Bucharest, CERN, Dubna (JINR), Fairfax (GMU), Ferrara, Firenze, Frascati, Glasgow, Lancaster, Liverpool, Louvain-la-Neuve, Mainz, Moscow (INR), Naples, Perugia, Pisa, Prague, Protvino (IHEP), Rome I, Rome II, San Luis Potosi, Torino, TRIUMF, Vancouver (UBC)

NA62: the Experiment

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ *(a)* NA62: the Analysis

Selection

- $K^{+}\text{-}\pi^{+}$ matching (Straw GTK KTAG RICH)
- $\rm K^+$ decays in the decay region
- π^+ identification (Calorimeters RICH)
- γ / multi-track rejection (calorimeters, hodoscope)

Background in signal regions

 K^+ decays in decay region: $\pi^+\pi^0$, $\mu^+\nu$, $\pi^+\pi^-e^+\nu$

Accidental π^+ from the beam line

Mostly data – driven predictions, control regions for validation

Single Event Sensitivity (S.E.S.)

Effective number K^+ decays from $K^+ \rightarrow \pi^+ \pi^0$

Signal efficiency

- Monte Carlo (acceptance)
- Data (trigger efficiency, random veto)

Analysis in 5 GeV/c wide bins of π^+ momentum

Counting of the observed events in signal regions

Branching ratio from fit in momentum bins and years of data taking Blind analysis

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ (*a*) NA62: the single event sensitivity (SES)

- Signal loss probability resulting from random veto induced by photon rejection/extra particle rejection due to accidental activity
- Estimated from data $(K^+ \rightarrow \mu^+ \nu)$
- Dependent on the beam intensity; 2018 data: $\langle \epsilon_{RV} \rangle = 0.66 \pm 0.01$

SES (2018) = $(1.1 \pm 0.1) \times 10^{-11} \Rightarrow N_{\pi\nu\nu}^{exp}$ (2018)~7.6 SES (2016 + 17 + 18) = $(0.84 \pm 0.05) \times 10^{-11} \Rightarrow N_{\pi\nu\nu}^{exp}$ (2016 + 17 + 18)~10

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (*a*) NA62: the Background (2018 data)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (*a*) NA62: Upstream Background

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ *(a)* NA62: the Result

3.4 σ evidence for $K^+ \to \pi^+ \nu \bar{\nu}$ BR $(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4}|_{\text{stat}} \pm 0.9_{\text{syst}}) \times 10^{-11}$ at 68% CL arXiv: 2103.15389, accepted by JHEP

$K \rightarrow \pi \nu \overline{\nu}$: the Plot

- High sensitivity to NP (non MVF): significant variations wrt SM possible
- Model-dependent correlations of possible variations of K^+ and K_L BR
- Weak constraints from other flavour observables

$K \rightarrow \pi \nu \overline{\nu}$: the Plot

- High sensitivity to NP (non MVF): significant variations wrt SM possible
- Model-dependent correlations of possible variations of K^+ and K_L BR
- Weak constraints from other flavour observables

Rare Kaon Decays and CKM

Rare Kaon Decays and CKM

 $\mathcal{B}(K_S \to \mu^+ \mu^-)_{SM} = (5.0 \pm 1.5) \times 10^{-12} \propto |A_S^{LD} + A_S^{SD}|^2, |A_S^{SD}|^2 \propto |\bar{\eta}|^2 \sim \mathcal{O}(10^{-13}), 1\%$ theory error

- $K_S K_L$ interference $\rightarrow \mu^+ \mu^-$: allows the measurement of $|A_S^{SD}|^2$ D'Ambrosio et al. PRL 119, 20, 201802 (2017), JHEP 05 024 (2018) Dery, Ghosh, Grossman, Schacht, arXiv 2104.06427
 - $\mathcal{B}(K_L \to \mu^+ \mu^-)$, $\mathcal{B}(K_S \to \mu^+ \mu^-)$ + time dependent rate measurement

Kaons @ LHCb

LHCb: 1 strange hadron / event produced at 13 TeV

Production rate compensates low trigger efficiency and long lifetime

Vast K program [mainly for Run3]

 $K_{S,L} \rightarrow \mu^{+}\mu^{-}$ $K_{S} \rightarrow \pi^{0}\mu^{+}\mu^{-}$ $K_{S} \rightarrow \mu^{+}\mu^{-}\mu^{+}\mu^{-}(e^{+}e^{-})$ $K_{S} \rightarrow \pi^{+}\pi^{-}e^{+}e^{-}$ $K^{+} \rightarrow \pi^{+}l^{+}l^{-}$

L [m]

Present result from Run1 + 2 $B(K_S \to \mu^+ \mu^-) < 2.1(2.4) \times 10^{-10} @ 90 (95)\% CL$ PRL 125, 231801 (2020)

. . .

Rare/Forbidden K Decays: Test of Lepton Universality and Explicit SM Violation

Test of lepton universality: $K^+ \to \pi^+ \mu^+ \mu^- \text{ vs } K^+ \to \pi^+ e^+ e^-$, $(R_K \equiv \Gamma(K^+ \to e^+ \nu) / \Gamma(K^+ \to \mu^+ \nu))$

Search for LFV and/or LNV (before ICHEP 2020)

PDG '20

LFV mode	90% CL upper limit	Experiment	Yr./Ref.	Type
$K^+ \rightarrow \pi^+ e^- \mu^+$	1.3×10^{-11}	BNL-865	2005/Ref. [15]	LFV
$K^+ \rightarrow \pi^+ e^+ \mu^-$	5.2×10^{-10}	BNL-865	2000/Ref. [16]	LFV
$K_L \rightarrow \mu e$	4.7×10^{-12}	BNL-871	1998/Ref. [17]	LFV
$K_L \rightarrow \pi^0 e \mu$	7.6×10^{-11}	KTeV	2008/Ref. [18]	LFV
$K_L \rightarrow \pi^0 \pi^0 e \mu$	1.7×10^{-10}	KTeV	2008/Ref. [18]	LFV
$K^+\!\rightarrow\!\pi^-e^+e^+$	2.2×10^{-10}	NA-62	2019/Ref. [19]	LNV
$K^+ \rightarrow \pi^- \mu^+ \mu^+$	4.2×10^{-11}	NA-62	2019/Ref. [19]	LNV
$K^{\pm} \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$	8.6×10^{-11}	NA48/2	2017/Ref. [20]	LNV
$K_L \rightarrow e^{\pm} e^{\pm} \mu^{\mp} \mu^{\mp}$	4.12×10^{-11}	KTeV	2003/Ref. [21]	LNV
$K^+\!\rightarrow\!\pi^-\mu^+e^+$	5.0×10^{-10}	BNL-865	2000/Ref. [16]	LNFV

Search for feably interacting particle production: $K^+ \rightarrow l^+ N$, $K^+ \rightarrow \mu^+ \nu X$, $K^+ \rightarrow \pi^+ X$

27

LD dominated, mediated by $K^+ \rightarrow \pi^+ \gamma^*$ •

Differential decay rate:

 $d\Gamma/dz \propto G_F M_K^2 (a + bz) + W^{\pi\pi}(z)$

 $z=m(\mu^+,\mu^+)^2/M_K^2$

Form factors (FF) $K_{3\pi}$ loop (non pert. QCD) term

 $K^+ \rightarrow \pi^+ l^+ l^-$

- Lepton Flavour universitality (LFU) predicts same a, b for $l = e, \mu$ •
- Difference correlated to possible LFU in B sector .

Crivellin et al. PRD 93 074038 (2016) D'Ambrosio et al. JHEP 02 049 (2019)

• $K^+ \rightarrow \pi^+ \mu^+ \mu^-$ FF and B measured by NA62 using data from 2017+2018

 $K^+ \rightarrow \pi^+ \mu^+ \mu^- a$ NA62

Key feature:

precise track reconstruction •

Analysis strategy

- Normalization to $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ •
- Fit to z spectrum to extract FF

PoS(ICHEP2020) 364

Signal and background

- $N(\pi^+\mu^+\mu^-) \sim 28 \times 10^3$
- Background < 0.1%•

Result (preliminary): $a = -0.592 \pm 0.013_{stat} \pm 0.007_{syst} \pm 0.001_{ext}$ $b = -0.699 \pm 0.046_{stat} \pm 0.035_{syst} \pm 0.003_{ext}$ $\mathcal{B} = (9.27 \pm 0.07_{stat} \pm 0.08_{syst} \pm 0.04_{exr}) \times 10^{-8}$

LFV & LNV (a) NA62: $K^+ \rightarrow \pi \mu e$

Forbidden SM, possible in NP scenario

E.g. mediated by leptoquark [JHEP 12(2019) 089], [NPB 176 (1980) 135]

Experimental key-features: particle ID (calorimeters), precise track reconstruction

Background:

 $K^+ \rightarrow 3$ charged particles + mis-ID $e^{\pm} \leftrightarrow \pi^{\pm}$ (O(%) data-driven estimation) + π^{\pm} decay in flight

LFV & LNV (a) NA62: $K^+ \rightarrow \pi \mu e$

Signal and Backgrounds: $K^+ \to \pi^- \mu^+ e^+$: $n_{\rm bg} = 1.07 \pm 0.20$, $n_{\rm obs} = 0$; $K^+ \to \pi^+ \mu^- e^+$: $n_{\rm bg} = 0.92 \pm 0.34$, $n_{\rm obs} = 2$; $\pi^0 \to \mu^- e^+$: $n_{\rm bg} = 0.23 \pm 0.15$, $n_{\rm obs} = 0$.

Heavy Neutral Lepton production: $K^+ \rightarrow l^+ N$, $l = e, \mu$

Experimental key features: precise track reconstruction, γ veto, particle ID

Analysis technique: peak search over the reconstructed N mass spectrum, scanning several N mass hyptoheses

Background: data-driven evaluation from the mass spectrum exptrapolated in the search window

Normalization: acceptance from simulation, kaon flux from K_{l2} peak

Heavy Neutral Lepton production: $K^+ \rightarrow l^+ N$, $l = e, \mu$

Experimental key features: precise track reconstruction, γ veto, particle ID

Analysis technique: peak search over the reconstructed N spectrum, scaning several N mass hyptoheses

Background: data-driven evaluation from the mass spectrum exptrapolated in the search window

Normalization: acceptance from simulation, kaon flux from K_{l2} peak

X particle production in $K^+ \rightarrow \pi^+ X$

Experimental key features: spin-off analysis of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Analysis technique: peak search using $m_{miss}^2 = (p_K - p_l)^2$ as observable, for several X mass hyptoheses

Background: from $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis with modelling of the $m_{miss}^2 + K^+ \rightarrow \pi^+ \nu \bar{\nu}$ itself from simulation

X particle production in $K^+ \rightarrow \pi^+ X$

Experimental key features: spin-off analysis of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Analysis technique: peak search using $m_{miss}^2 = (p_K - p_l)^2$ as observable, for several X mass hyptoheses

Background: from $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis with modelling of the $m_{miss}^2 + K^+ \rightarrow \pi^+ \nu \bar{\nu}$ itself from simulation

X particle production in $K^+ \rightarrow \pi^+ X$

Analysis technique: peak search using $m_{miss}^2 = (p_K - p_l)^2$ as observable, for several X mass hyptoheses

Background: from $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ analysis with modelling of the $m_{miss}^2 + K^+ \rightarrow \pi^+ \nu \bar{\nu}$ itself from simulation

Present @ CERN NA62 (Run1) LHCb (Run1-2)

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$: $\mathcal{O}(40\%)$ measurement (NA62)

 $K_S \rightarrow \mu^+ \mu^-$: Sensitivity $\mathcal{O}(10^{-10})$ (LHCb)

LU Test and Explicit violation of SM

 $K^+ \rightarrow \pi^+ l^+ l^-$: LU conservation test $\mathcal{O}(\%)$

- $K \rightarrow LNV/LFV$: Single event sensitivity $\mathcal{O}(10^{-11})$
- $K \rightarrow Exotics$: Single event sensitivity $\mathcal{O}(10^{-8} \div 10^{-11})$

LU Test and Explicit violation of SM

- $K^+ \rightarrow \pi^+ l^+ l^-$: LU conservation test $\mathcal{O}(<\%)$
- $K \rightarrow LNV/LFV$: Single event sensitivity $\mathcal{O}(10^{-12})$
- $K \rightarrow Exotics$: Single event sensitivity $\mathcal{O}(10^{-8} \div 10^{-12})$
- R_K : $\mathcal{O}(0.1\%)$ measurement (NA62)

17/05/2021

Future (< 2025): NA62

- SPSC approved the NA62 run until LS3 [O(2024)]
- 2021 NA62 run scheduled mid-July mid-November
 - Warm-up run to commission new hardware
 - Scan of the intensity
 - Find the optimal run working point, hopefully 30% higher than in Run1 («nominal intensity»)

Expected upstream background reduction imes 5

LU Test and Explicit violation of SM

- $K^+ \rightarrow \pi^+ l^+ l^-$: LU conservation test $\mathcal{O}(<\%)$
- $K \rightarrow LNV/LFV$: Single event sensitivity $\mathcal{O}(10^{-12})$
- $K \rightarrow Exotics$: Single event sensitivity $\mathcal{O}(10^{-8} \div 10^{-12})$
- R_K : $\mathcal{O}(0.1\%)$ measurement (NA62)

17/05/2021

 $\mathcal{O}(20\%)$ measurement

 $K_L \rightarrow \pi^0 l^+ l^-$: (K facility) SM Sensitivity at least

Future (> 2025) @ CERN: K - facility

- $K^+ K_L$ integrated «high intensity» beam in North Area (SPS)
 - New targets; beam line elements and shielding upgrade
- NA62-like experiment at \times 4 intensity (at least) for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
 - Improved time resolution (O(25 ps)) to reduce random veto
 - Mantain key performance at high rate: space-time reconstruction, low material-budget, photon-rejection
 - Synergies for detectors with collider projects (e.g. New generation silicon pixels for beam tracker)
- KLEVER for $K_L \to \pi^0 \nu \bar{\nu}$
 - $10^{13} K_L$ decays / year @ 10^{19} proton on target / year (100 effective days)
 - New / refurbished e.m. Calorimeters
 - No tracking
- Experiment for $K_L \to \pi^0 l^+ l^-$, $K_L/K_S \to \mu^+ \mu^-$, Lepton flavour violation in K_L decays
 - Tracking and PID of K^+ experiment, KLEVER-like calorimeters

Conclusions

 Rare kaon decays are among the most sensitive probe of NP at the highest mass scale, and are addressed at CERN with the NA62 and LHCb experiment

$$\begin{array}{ccc} \mathbf{K}^{\scriptscriptstyle +} \rightarrow \pi^{\scriptscriptstyle +} \nu \overline{\nu} & \mathbf{K}_{\scriptscriptstyle L} \rightarrow \pi^{\scriptscriptstyle 0} \nu \overline{\nu} & \mathbf{K}_{\scriptscriptstyle S} \rightarrow \mu^{\scriptscriptstyle +} \mu^{-} \\ \\ \mathbf{K}_{\scriptscriptstyle L} \rightarrow \mu^{\scriptscriptstyle +} \mu^{-} & \mathbf{K}_{\scriptscriptstyle L} \rightarrow \pi^{\scriptscriptstyle 0} \mathbf{e}^{\scriptscriptstyle +} \mathbf{e}^{-} & \mathbf{K}_{\scriptscriptstyle L} \rightarrow \pi^{\scriptscriptstyle 0} \mu^{\scriptscriptstyle +} \mu^{-} \end{array}$$

• $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ is entering the era of the precise branching ratio measurement with the NA62 experiment

- Kaons decays can probe NP through: test of lepton universality, search for LFV/LNV processes, search for exotic low-mass particles
- Kaon physics at CERN is officially scheduled up to 2025
- A Kaon facility for K^+ and K_L at SPS is under study [PBC workshop 01/03/2021, Snowmass 2021 RF0-010]

SPARE

Tracking @ NA62

«kaon» [Gigatracker]

- 3 stations Silicon pixel $300\times 300\,\mu\text{m}^2$
- Time resolution $\sigma(t) < 150 \text{ ps}$ / station
- «4D» track reconstruction
- Rate (2017) ~400 MHz hadrons

«pion» [STRAW]

- 4 Stations, 7000 straws, Ø 10 mm
- Total radiation length $0.5\% X_0$
- Spatial resolution $\sim 80 \ \mu$ m
- Rate (2017) \sim 5 MHz (mostly μ)

K - π Matching (a) NA62

- KTAG Gigatracker RICH Time matching
- Gigatracker Straw tracks closest distance of approach (CDA)
- O(%) K⁺ mis identification (pileup beam track associated to π^+
- 75% $K^+ \rightarrow \pi^+$ efficiency

RICH @ NA62

17 m long, Ne Radiator, sealed 2000 PMs' in 2 spots Array of exagonal mirrors θ_c resolution ~100 μrad Particle ID: pi – mu separation Timing

Photon Vetoes @ NA62

