## Particle Id at the Energy Frontier From 3-Vector to 4-Vectors

#### Stephen Mrenna

Computing Division (FNAL) and MCTP (University of Michigan)

TOF WorkShop



3

< ∃ →

| Physics                  | Decay Mode                                              | Detector Property |         |          |              |                      |
|--------------------------|---------------------------------------------------------|-------------------|---------|----------|--------------|----------------------|
| Quantity                 |                                                         | Vertex            | $K/\pi$ | $\gamma$ | superb       | lep-                 |
|                          |                                                         | trigger           | separa  | detect   | $\tau$ reso- | $\operatorname{ton}$ |
|                          |                                                         |                   | tion    | tion     | lution       | id                   |
| $sin(2\alpha)$           | $B^o  ightarrow  ho \pi  ightarrow \pi^+ \pi^- \pi^o$   | $\sim$            | $\sim$  | $\sim$   |              |                      |
| $\cos(2\alpha)$          | $B^o  ightarrow  ho \pi  ightarrow \pi^+ \pi^- \pi^o$   | $\sim$            | $\sim$  | $\sim$   |              |                      |
| $sign(sin(2\alpha))$     | $B^o  ightarrow  ho \pi, B^o  ightarrow \pi^+\pi^-$     | $\sim$            | $\sim$  | $\sim$   |              |                      |
| $sin(\gamma)$            | $B_s \rightarrow D_s K^-$                               | $\sim$            | $\sim$  |          | $\sim$       |                      |
| $sin(\gamma)$            | $B^+ \rightarrow D^o K^+$                               | $\sim$            | $\sim$  |          |              |                      |
| $sin(\gamma)$            | $B \rightarrow K \pi$                                   | $\sim$            | $\sim$  | $\sim$   |              |                      |
| $sin(\gamma)$            | $B  ightarrow \pi^+\pi^-, B_s  ightarrow K^+K^-$        | $\sim$            | $\sim$  |          | $\sim$       |                      |
| $sin(2\chi)$             | $B_s  ightarrow J/\psi \eta', J/\psi \eta$              | $\sim$            | $\sim$  | $\sim$   | $\sim$       | $\sim$               |
| $sin(2\beta)$            | $B^o \rightarrow J/\psi K_s$                            |                   |         |          |              | $\sim$               |
| $sin(2\beta)$            | $B^o \rightarrow \phi K_s, \eta' K_s, J/\psi \phi$      | $\sim$            | $\sim$  | $\sim$   |              | $\sim$               |
| $\cos(2\beta)$           | $B^o  ightarrow J/\psi K^*, B_s  ightarrow J/\psi \phi$ |                   |         |          |              |                      |
| $T_{S}$                  | $B_s  ightarrow D_s \pi^-$                              | $\sim$            | $\sim$  |          | $\sim$       |                      |
| $\Delta\Gamma$ for $B_s$ | $B_s \rightarrow J/\psi \eta', K^+K^-, D_s \pi^-$       | $\sim$            | $\sim$  | $\sim$   | ,            | $\sim$               |
| $D-\bar{D}$ Mixing (?)   |                                                         |                   |         |          |              |                      |

・ロン ・回 と ・ ヨ と ・ ヨ と …

-2

## Particle Counting: b vs c at $\sqrt{s} = 115$ GeV



## b at $\sqrt{s} = 115$ vs 500 GeV





### E< 20 GeV && d > 0.5 mm



### Multiplicity from different hard partons



# WW at $\sqrt{s} = 250$ GeV



Matched Datasets have a systematically larger rate and different shape

Truncated Datasets contain only  $Wb\bar{b} + Wb\bar{b}j$ 

HO topologies modify shape



# $t\overline{t}$ at $\sqrt{s} = 500 \text{ GeV}$



Matched Datasets have a systematically larger rate and different shape

Truncated Datasets contain only  $Wb\bar{b} + Wb\bar{b}j$ 

.⊒ . ►

HO topologies modify shape



#### Long-lived Particles Nearly Degenerate Charged-Neutral Pairs



Large  $|\mu|$  Limiting Case



## **Collider Signatures**

| Signal          | Definition                                                                                                     |  |
|-----------------|----------------------------------------------------------------------------------------------------------------|--|
| LHIT            | Long, heavily-ionizing ( $\geq 2MIP$ 's as measured by SVX+CT+PS), large- $p_T$                                |  |
|                 | track that reaches the MC. The energy deposit in the HC in the track direction                                 |  |
|                 | must be consistent with expected ionization energy deposit for the $\beta$ measured                            |  |
|                 | (using TOF and/or SVX+CT+PS), i.e. no hadronic energy deposit.                                                 |  |
| TOF             | A large $p_T$ track seen in the SVX and CT along with a signal in the TOF                                      |  |
|                 | delayed by 500 ps or more (vs. a particle with $\beta = 1$ ). HC energy deposit                                |  |
|                 | (in the direction of the track) is required to be consistent with the ionization                               |  |
|                 | expected for the measured $\beta$ (i.e. no hadronic deposit).                                                  |  |
| DIT             | An isolated, large– $p_T$ track in the SVX and CT that fails to reach the MC                                   |  |
|                 | and deposits energy in the HC no larger than that consistent with ionization                                   |  |
|                 | energy deposits for the measured (using SVX+CT+PS) $\beta.$ Heavy ionization                                   |  |
|                 | in the SVX+CT+PS, corresponding to $\beta$ < 0.8 or $\beta$ < 0.6 (DIT8 or DIT6),                              |  |
|                 | may be required.                                                                                               |  |
| KINK            | A track that terminates in the CT, turning into a soft, but visible, charged–                                  |  |
|                 | pion daughter-track at a substantial angle to parent.                                                          |  |
| STUB            | An isolated, large– $p_T$ (as measured using SVX) track that registers in all SVX                              |  |
|                 | layers, but does not pass all the way through the CT. Energy deposits in the                                   |  |
|                 | EC and HC in the direction of the track should be minimal.                                                     |  |
| SNT             | One or more STUB tracks with no additional trigger. Heavy ionization of the                                    |  |
|                 | STUB in the SVX, corresponding to $\beta < 0.6$ (SNT6), may be required.                                       |  |
| SMET            | One or more STUB tracks with an $\not\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ |  |
|                 | the STUB in the SVX, corresponding to $\beta < 0.6$ (SMET6), may be required.                                  |  |
| HIP             | A high–impact–parameter ( $b \ge 5\sigma_b$ ) track in the SVX, with large $E_T$ trigger-                      |  |
|                 | ing, perhaps in association with a visible KINK in the SVX.                                                    |  |
| $\gamma + E_T$  | Isolated, large- $p_T$ photon and large $E_T$ .                                                                |  |
| $monojet + E_T$ | Large $p_T$ jet and large $\ell_T$ .                                                                           |  |
| mSUGRA-like     | $jet(s) + \not \! E_T$ , tri-leptons, like-sign di-leptons, <i>etc.</i> , except that the cross section        |  |
|                 | for the $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ tri–lepton signal can be suppressed.                           |  |





< ≣⇒

2

### R Parity Violation and Baryon Production



Stephen Mrenna Particle Id at the Energy Frontier

# **RPV** Signature



2

[문 ▶ | ★ 문