Psec timing/LAPPD program at Chicago Evan Angelico, Andrey Elagin, HJF, Rich Northrop, Carla Pilcher, Eric Spieglan plus Eric Oberla (emeritus) and Mircea Bogdan on electronics plus 12 (!) HS and undergrad students last summer ### Our (UC) LAPPD™ 'Tile' - 1. 8" x 8" active area (MCP size) - 2. Amplification: a pair of MgO MCPs in a chevron config. - 3. Measured gain typically $\geq 10^7$ - 4. Space resolution 700 microns in 2D (strips); 300 microns with ½" pads if signals are shared - 5. Time resolution: < 50 psec single photon measured, goal of a < a few (or one) for charged particles traversing window (50 PE) or high energy photons (i.e. large pulses) B.W. Adams, A. Elagin, H. Frisch, R. Obaid, E. Oberla, A. Vostrikov, R. Wagner, J. Wang, M. Wetstein; {\it Timing 2 Characteristics of Large Area Picosecond Photodetectors}; Nucl. Inst. Meth. Phys. Res. A., Vol. 795, pp 1-11 (Sept. 2015); ### **Topics** - 1. Photodetector development (R&D with Incom Inc) - a) Indium window-to-tilebase seal - b) Application-independent anode (pads or strips) metal resistive capacitive coupling - c) Ceramic robust high-bandwidth 1-piece body - d) PMT-process batch production: facilities, process - e) Theory-based photocathodes (with RMD, Smedley, Attenkofer) - 2. Electronics (Eric Oberla, Mircea Bogdan, ANNIE) - a) Multibuffer 130nm CMOS 10 GS/sec ASIC developmnt - b) Scalable FPGA-based DAQ readout/control for ANNIE - 3. Goals- expand physics reach via psec timing frontier: testbeam and simulation studies (PhD students, Elagin): - a) Optical Time Project Chamber for double-beta decay - b) Collider photon/ch vertexing and track quark content ### Recent papers (see lappddocs.uchicago.edu) - E. Angelico, T. Seiss, B. W, Adams, A. Elagin, H. J. Frisch, E. Spieglan;\\{\it Capacitively coupled pickup in MCP-based photodetectors using a conductive, metallic anode};\\Nucl. Inst. Meth. Phys. Res. A. (Oct. 2016) - A. Elagin, H. J. Frisch, B. Naranjo, J. Ouellet, L. Winslow, T. Wongjirad;\\{\it Separating Double-Beta Decay Events from Solar NeutrinoInteractions in a Kiloton-Scale Liquid Scintillator Detector By Fast Timing};Nucl. Inst. Meth. Phys. Res. A. (Sept. 2016) - E. Oberla and H.J. Frisch;\\ {\it Charged particle tracking in a water Cherenkov optical time-projection chamber};\\ Nucl. Inst. Meth. Phys. Res. A. Volume 814, 19-32, (April 2016)% ISSN 0168-9002. arXiv:1510.00947 Andrey and Evan will give talks at Light 2017 next week on tile production and OTPC. #### 1: TOP SEAL: glass sidewall to window- consider proven ## Recipe (lots of characterization, vendor/Ossy input) - 1. Very clean glass surfaces - 2. 200 nm of Nichrome - 3. 200 nm of Cu w no vacuum break - 4. .9999 Indium wire sized for volume - 5. Etch Indium wire in 5% HCl - 6. Thermal cycle 100C above melting - 7. Press down on window edges w DOF #### What happens: (Andrey Elagin FIB/SEM/ studies) (ITT story) - 1. Nichrome layer will provide tie layer - 2. Cu provides protection against oxide on NiCr - 3. Indium wire gets squished--oxide broken (Walters) - 4. Cu diffuses into bulk Indium (Ossy said so) - 5. Nickel and Chrome diffuse into bulk Indium (!) - 6. A very thin layer containing chrome on the glass forms the bond to the indium. #### **TOP SEAL- continued** The LAPPD size introduces 3 serious problems not experienced in making smaller tubes: - 1. Uniform metalization, indium distribution, and cleanliness over a much longer length (~36") - 2. Uniform pressure and heating over that length - 3. In a transfer process base sealing surface level to a mil or less (?-number I don't know, as we use wire captured in place between the window and sidewall) #### And, a precise STACK HEIGHT over entire tile. - 1. FEA and many trials dictate a stack height low by 0.002±0.0005" over the tile interior - Each button spacer has to be custom shimmed to meet the above - 3. Pressing uniformly on the edges over the seal area on all 4 sides is essential 2: Capacitively coupled anode w. external signal pickup 1. Metal layer rather than thick-film for production during seal layer coating (also realities of thick-film) 2. 10nm of NiCr is resistive enough for RC (capacitive) coupling ### 2: Capacitively coupled anode w. extrnl signal pickup 10 nm-thick NiCr anode plane (DC ground) 50-ohm stripline readout (E. Angelico) LHC Pad test pattern readout (T. Seiss) # Photodetector Development Capacitively coupled anode w. extrnl signal pickup Comparison of risetimes direct vs capacitively coupled on strip readout PC-card Comparison of risetimes direct vs capacitively coupled on pad readout PC-card #### Capacitively coupled anode w. extrnl signal pickup Sharing of the signal across two adjacent ½" pads Position resolution with ½" pads and large signals (256 pads per LAPPD). Advantage for Incom in they make 1-design tube; user defines, readout pattern, resolution, band-width on card 10 #### 3: Ceramic robust high-bandwidth 1-piece tile base - 1. Our university group complement s Incom's commercial focus on production of their glass tile design in 2 ways: - 1. Develop physics applications (e.g. OTPC; later in talk) - 2. Evolutionary design options- (but don't get in their way on the Gen-I glass tile while working on Gen-II!) - 2. Have developed a `Green-trimmed' ceramic tile base with the following advantages: - 1. One piece- no assembly of sidewall and base w. frit - 2. Hotter bake-out possible as no frit or silver ink anode - 3. Higher bandwidth than glass (also no ion migration) - 4. More robust than glass - 5. Working closely with Mike Foley of Incom under a DOE Nuclear Physics SBIR Disadvantages: long lead-times, no experience (vs glass) # 3: Ceramic robust high-bandwidth 1-piece tile base Sidewall and anode plane are green-trimmed and then ground to spec after full fire- no fritted or brazed large (long) joint Ceramic tile bases from 4 vendors- have 5 from each # 3: Ceramic robust high-bandwidth 1-piece tile base Multipurpose metallizing ('coating') glass or ceramic 200/200 nm NiCr/Cu seal surface - Major roadblock for both glass and ceramic (surprise!)- source of a lot of delay working out - 2. Expert territory only: Eileen Hahn (Fermilab), Sharon Jelinsky (SSL), Bing Xu (ANL), commercial precision optical coaters (2 vendors) - 3. Here we use coating for sealing surfaces, capacitively-coupled anode, and connection to pins to interior-single process (no vacuum break between sealing layers) - 4. Now have 2 good vendors+ # 4: Batch production process/facility development (w. Incom) Conventional PMTs are (usually) made in batches, using the hermetic package as the UHV environment #### **PMT Process Characteristics** - 1. Many tubes on one pump - 2. Very poor external vacuum- Oring seal on tubulation, small long path to small pump. Internal getter+alkali provide the UHV pumping - 3. External oven heating only tube (not vessel) - 4. Alkali source internal or external (Brits) - 5. Tubes are accessible during photocathod synthesis # Batch production process/facility development (w. Incom) For HEP use we estimate industry needs to make 50/week (2000/yr; 6000/postdoc). Not nuts- had a serious proposal for DUSEL-from a large company making a similar photodevice. However went down with DUSEL as well. Necessary to get price down, adequate availablity. Batch production process/scaleable facility development (w. Incom NP SBIR)- replicable Margherita I New lab (!) Wet lab (!!) Margherita II (improved) 5: Theory-based photocathodes (w. RMD, Smedley, Attenkofer; Luca Cultrera) K2CsSb powder diffraction of RMD cathode material taken at UC # Agenda of 2nd cathode workshop at UC Collaboration with BNL and RMD, and also Cornell, on 'theory-based' cathodes and workshops led to: a) ties to the cathode community, and the in-situ initiative # In-situ photocathode synthesis (Springer, Sinclair) Idea is to emulate RCA/Burle PMT production #### Steps: - 1. Coat (NiCr/Cu) border and electrode fingers on window - 2. Pre-deposit a 10nm Antimony (Sb) layer overlapping border and fingers - 3. Seal window to tile base with a bake-out/sealing thermal cycle: dual vacuum- 1) tile and 2) vessel - 4. Bring vessel to air, leaving sealed tile on its pump - 5. Introduce alkali vapor through tubulation while measuring QE of (exposed) window and resistance of MCP plates and stack - 6. Pinch off tubulation when photocathode is done We have used a `GodParent Committee' (CDF) to guide us: Klaus Attenkofer (BNL), Luca Cultrera (Cornell), Jeff Elam (ANL), Mike Pellin (ANL), Matt Poelker (JLAB), Charlie Sinclair (Cornell, SLAC), John Smedley (BNL), Gary Varner (Hawaii, Chair) #### In-situ photocathode synthesis (Springer, Sinclair) - GPs recommended doing only Cs first - Expect uniformity to be determined by thickness of Sb layer- should very uniform #### In-situ photocathode synthesis (Springer, Sinclair) #### **Successes** - We have learned how to manipulatethe movement of Cs around inside the system (remember we're beginners) - Vapor reached everywhere on the window- uniform - Chemical reaction between Cs and Sb seems to be `self-limiting' as expected- reaches a defined end-point - QE seems to be consistent with reasonable Cs3Sb cathode, but we cannot measure it precisely yet (subtlety I missed completely- can explain if asked in questions) - MCP plates are not permanently damaged/changed #### **Problems discovered:** - MCP plates go to lower resistance (recoverable in air) - We had exposed Cu on the window- Indium wet it. Cs interacts with Indium to form a black powder. - Resistive buttons interact with Cs (new buttons yesterday) - Measuring QE is made more difficult by our internal HV divider (can't get current across first gap directly). ### In-Situ Cathode Synthesis Trials in Progress # E.g. The black powder from cesiating excess indium Figure 1: This black dust was found thrown throughout the tile, in crevices and on MCPs and on glass heads. We presume that it came from the window. It was collected from multiple locations and analyzed. This dust is from the window, and flaked everywhere. (New windows will have no exposed Cufew weeks away) Figure 3: The individual chemical maps from the Figure 2. Notice that the dust specs are mostly Cs and Indium, and the empty space is Si and O. This only confirms that the black dust is some mixture of Cs and Indium, and not its relative composition or homogeneity. Figure 4: A spectrum from a **dust** fleck shown in the SEM picture above. The peaks indicate the existence of indium and Cs, and not their quantitative relative composition. Figure 5: This spectrum is taken from the layer on the window that had turned black and flaky. The spectrum looks almost identical to that of the dust flecks. # Analysis showing it's a CsIn compound #### **Electronics** Eric Oberla's Ph.D thesis; Mircea Bogdan, John Podczerwinski, Horatio Li, Evan Angelico; John Porter of Sandia funded PSEC4A Mosis run; Jonathan Eisch, Miles Lucas,, .. (ANNIE) We have a new Central Card- Mircea Bogdan Central Card Controls 4 front-end boards Now 64 bds (1920 channels) USB 2.0 or gigabit Ethernet PC connection Now +SFP and VME Daisy chain or tree configurations to extend system channel count Clock fan-out We (Porter, Sandia) have the new PSEC4A ASIC Front-end PSEC4 Card ("AC/DC Card") 30 channels PSEC4 waveform recording At 10GS/s, captures a 25 ns snapshot per waveform USB 2.0 standalone readout or 8x LVDS lines Now +SFP and VME communication to Central Card LVDS system interface Up to 800 Mbps data rate per line Clock, trigger, configuration 10/12/2017 CPAD Albuquerque 2017 22 ### The Original Motivation: I GotTired of @#\$! Jets - **Goals: 1) Measure all 4-vectors— can reconstruct masses** - 2) assign tracks to vertices (e.g. CMS forward Ecal.) - 3) vertex photons at colliders (4-vectors!); Aside: Use photons (and electrons) as reference timei.e. do differential timing of tracks from the same vertex to eliminate external clock jitter ### **Three Timing Cases to Distinguish** The factors limiting the ultimate timing resolution are different in each of the following cases: - 1. Single optical photons (Scintillation or Cherenkov) - 2. Charged Particles above Cherenkov Threshold(H2O,glass) - 3. Electromagnetic showers from High Energy photons I will focus on #2 and #3, relativistic charged particles and high energy photons, for which psec or sub-psec time resolutions I believe are plausible given certain detection criteria are met. Note: In what follows I treat time and space distances in the same units, i.e. c=1, and 1 psec =300 microns; 1 nsec =1000 psec; 1 nsec =1 foot ### **Criteria for Sub-Psec Timing-1** Fast Source: A psec source in time-space of many photons in a time-space interval (example: Cherenkov light from a charged particle traversing a radiator or the entrance window of a photodetector); (Or early in an electromagnetic shower such as in a preradiator or EM calorimeter (separate discussion)); ### **Criteria for Sub-Psec Timing-2** Psec-level pixel size (example: 10-20 micron pores in an MCP plate) ### **Criteria for Sub-Psec Timing-3** High gain: The gain has to be high enough that a single photon triggers, i.e. the first photon 'in' determines the leading edge of the pulse and consequently the timing. N.B. NOT 1/sqrt(N) **Amplification section: Gain-bandwidth, Signal-to-Noise, Power, Cost (eg: two-stages of MgO MCPs give gain >10**⁷) ### Signal-to-Noise, Rise-time Dependences Long discussions at UC/ANL /France workshops of dependence on analog bandwidth, gain, noise, digitization methods, etc.; Answer (S. Ritt) is that at the level of present performance, using waveform sampling, the achievable time resolution is well-described by three parameters: 1) analog band-width (aka rise-time); 2) signal-to-noise; and 3) the sampling rate (assuming sufficient number of bits not to limit). Show Stefan Ritt's Rule-of-Thumb. For a sampling rate proportional to analog bandwidth it's only 2 parameters. ### **Breaking the 1-Psec Barrier?** Stefan Ritt (PSI) table from 2nd Chicago Photocathode Workshop (annotated) (see psec.uchicago/edu/library) | Signal | Noise | Sampling | Bandwidth | Resolution | |------------------------------------|------------|----------|------------------|------------| | U | ΔU | f_s | f_{3db} | ∆t | | 100 mV | 1 mV | 2 GSPS | 300 MHz | ~10 ps | | 1 V | 1 mV | 2 GSPS | 300 MHz | 1 ps | | 100 mV | 1 mV | 20 GSPS | -3.GHz | 0.7 ps | | 1V | 1 mV | 10 GSPS | 3 GHz | 0.1 ps | | LAPPD: 1V 0.7 mv 15 GS/sec 1.5 GHz | | | | ?? | Before 100 fsec something else will surely bite us, but still... ### **Present (now old) Time Resolution** Single Photo-electron PSEC4 Waveform sampling Sigma=44 psec Differential Time Resolution Large signal Limit Oscilloscope Readout Black line is y=3.1x+0.5 (ps) Red line is y=2.8x +1.5 (ps) Where the constant term represents the large S/N limit (0.5-1.5 ps) 800 700 600 300 200 100 Highly non-optimized system (!)- could do much better 10/12/2017 **30** ## Timing res. agrees with MC N = RMS of the noise; S = signal amplitude M. Wetstein, B. Adams, A. Elagin, R. Obaid, A. Vostrikov, ... ### Opinion, pure and simple (why not) ### Next round of big collider detectors - Should measure 4-vectors of all tracks up to (say) P_T= 25 GeV using ultra-fast TOF - Should vertex all particles using ultra-fast TOF, including photons - For ultra-fast TOF need small pixels, high gain, and lots of photons in a coherent localized pulse. 32 John Lindsley (air-shower array pioneer, with Bruno Rossi at MIT). Volcanos in background. Very primitive and wonderful- amazing summer for a 15-yr old Volcano ranch group car: predecessor of the WWII Navy Weapons carrier we drove out in the morning (summer, 1960) # The End ### Acknowledgements - H. Marsiske, H. Nicholson and the US DOE Office of Science - Staff and management at Incom and Arradiance - Colleagues and collaborators at ANL, SSL, and Hawaii - Others in the field of fast-timing, with special thanks to T. Ohshima and J. Vavra; and waveform sampling, with special thanks to E. Delagnes, J.F.-Genat, S. Ritt, and G. Varner This work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences and Offices of High Energy Physics and Nuclear Physics under contracts DE-SC0008172 and DE-SC0015367; the National Science Foundation under grant PHY-1066014; and the Physical Sciences Division of the University of Chicago. 10/12/2017 **34** # Backup Slides Joe Gregar (master glassblower Argonne) and Andrey **Ceramic tile bases from 4 vendors** Second Margherita for ceramic in our brand-new lab; new wet lab₇(!) ### **A Plea** As money gets tight we naturally pull back from risk and disruptive technologies. However the big gains in our exploratory capabilities have come from new things- often not easy- e.g. the TPC and silicon vertex detectors (I was on a godparent committee that approved Aldo Menzione's for CDF). We should aim for 'a portfolio' of risk'— judiciously and thoughtfully chosen; but we should fight the shutting down either new initiatives or career paths for young physicists interested in new ideas. (N.B. not a plea for my program per se- much broader and more important to the future of US basic science)