Large-area MCP-based Photo-detectors, Ultra-fast timing, and sub-mm Spatial Resolution (LAPPD)

Henry Frisch

Enrico Fermi Institute, Univ. of Chicago and HEPD, Argonne National Laboratory

The 4 'Divisions' of LAPPD

Outline

- 1. The Power of Correlated Time/Space Points
- 2. MCP's, Transmission Lines, and Waveform Sampling
- 3. The 4 Determinants of Time Resolution
 - a) Signal/Noise (S/N)
 - b) Analog Band-width (ABW)
 - c) Sampling Rate
 - d) Signal statistics
- 4. What is the ultimate resolution at decent area & cost?
- 5. Water Cherenkov Counters; PET Cameras; TOF at Colliders; TOF for Fixed Target; Security; and New Ideas

MCP+Transmission Lines Sampled at Both Ends Provide Time and 2D Space

Field Programable
Gate Arrays
(not as shown- PC
cards will be
folded behind the
panel- not this
ugly...

Single serial Gbit connection will come out of panel with time and positions from center of back of panel

8" Tiles

10-15 GS/sec Waveform Sampling ASICS

Time and Space Points

Pulses from the 2 ends
of an 8" silk-screened
cheap-glass anode strip

5 nsec/div50 psec/pt

Reconstructing the vertex space point: Simplest case- 2 hits (x,y) at wall

Detector

Good timing alone doesn't do it-

The ALICE TPC:
Drift electrons
onto wires that
measure where
and when for each
electron.

Good time resolution would buy nothing if one integrated over a whole (blue) TPC sector- ie didn't correlate when and where

Correlated time and space points allow 3D reconstructions

10/31/2011 Light11 Ringberg Castle

Waveform Sample On Ends of Strips

DAQ system

Targeted to Super Module readout

Eric Oberla slide from ANT11

8

Extract time, charge, shape each end

DAQ system

Backside of Super Module:

Eric Oberla slide from ANT11

LAPPD Collaboration

Extract time, position of pulse using time from both ends

DAQ system

Eric Oberla slide from ANT11

LAPPD Collaboration

10

The 4 Determinants of Time Resolution

- a) Signal/Noise (S/N) -
- b) Analog Band-width (ABW)
- c) Sampling Rate -
- d) Signal statistics

J.F. Genat, F. Tang, H. Frisch, and G. Varner; *Picosecond Resolution Timing Measurements*, Nucl. Instr. Meth A607, 387 (2009); Workshop on *The Factors that Limit Time Resolution in Photodetectors*, University of Chicago, April 28-29, 2011

Simulation of Resolution vs abw

Jean-Francois Genat

Brown line: 10 Gs/sec (we've done >15);

1.5 GHz abw (we've done 1.6); S/N 120 (N=0.75mv, S is app specific)

Anode Testing for ABW, Crosstalk,...

Herve' Grabas, Razib Obaid, Dave McGinnis

Network Analyzer

Tile Anode

Anode Testing for ABW, Crosstalk,...

Herve' Grabas, Razib Obaid, Dave McGinnis

Tile row assembly of 3 tile anodes – abw >500 MHz

Anode Testing for ABW, Crosstalk,...

Razib Obaid

The PSEC4 Waveform Sampling ASIC

PSEC4: Eric Oberla and Herve Grabas; and friends...

PSEC-4 ASIC

Designed to sample & digitize fast pulses (MCPs):

- Sampling rate capability
 > 10GSa/s
- Analog bandwidth > 1
 GHz (challenge!)
- Relatively short buffer size
- Medium event-rate capability (up to 100 KHz)

→ 130 nm CMOS

LAPPD Collaboration

	SPECIFICATION
Sampling Rate	2.5-15 GSa/s
# Channels	6 (or 2)
Sampling Depth	256 (or 768) points
Sampling Window	Depth*(Sampling Rate)-1
Input Noise	<1 mV RMS
Analog Bandwidth	1.5 GHz
ADC conversion	Up to 12 bit @ 2GHz
Dynamic Range	0.1-1.1 V
Latency	2 μs (min) – 16 μs (max)
Internal Trigger	yes

10/11/2011 ANT'11 LAPPD electronics

Eric Oberla, ANT11

LAPPD Collabora

PSEC-4 ASIC

Eric Oberla, ANT11

 6-channel "oscilloscope on a chip" (1.6 GHz,10-15 GS/s)

Evaluation board uses
 USB 2.0 interface + PC
 data acquisition software

6-channel 'Scope-on-a-chip'

Eric
Oberla
(grad
student)

Real digitized traces from anode

20 GS/scope 4-channels (142K\$)

17 GS/PSEC-4 chip 6-channels (\$130 ?!)

Eric Oberla, ANT11

PSEC-4 Performance

Digitized Waveforms

Input: 800MHz, 300 mV_{pp}

Sampling rate: 10 6 A

Sampling rate: 13.3 GSa/s

- Only simple pedestal correction to data
- As the sampling rate-to-input frequency ratio decreases, the need for time-base calibration becomes more apparent (depending on necessary timing resolution)

Digitization Analog Bandwith

20

PSEC4: Eric Oberla and Herve Grabas+ friends...

Noise (unshielded)

PSEC4: Eric Oberla and Herve Grabas+ friends...

Channel 3

Full-Scale ~1.2 volts (expect

S/N>=100, conservatively)

Readout [mV]

Eric Oberla, ANT11

Signal- want large for S/N We see gains > 10⁷ in a chevron-pair

Ossy Siegmund, Jason McPhate, Sharon Jelinsky, SSL/UCB

ALD by Anil Mane and Jeff Elam, ANL

Can we go deep sub-picosec?: the Ritt Parameterization (agrees with JF MC)

Stefan Ritt slide, doctored

Parallel Efforts on Specific Applications

PET (UC/BSD, JCB, Lyon) Explicit strategy for staying on task-Multiple parallel cooperative efforts

Collider

Muon Cooling

Muons,Inc (SBIR)

LAPD Detector Development

ANL, Arradiance, Chicago, Fermilab, Hawaii, Muons, Inc, SLAC, SSL/UCB, UIUC, Wash. U

Drawing Not To Scale (!)

JPARC

Neutrinos

(Matt, Mayly, Bob, John, ..; Zélimir)

Nonproliferation LLNL,ANL,UC

Light11 Ringberg Castle

Mass Spec

Andy Davis, Mike Rellin, Eric Oberla

All these need work- naturally tend to lag the reality of the detector development

10/31/2011

Neutrino Physics

Spec: signal single photon, 100 ps time, 1 cm space, low cost/m2 (5-10K\$/m2)*

Daniel Boone

 Proposal (LDRD) to build a little proto-type to test photon-TPC ideas and as a simulation testbed

 Book-on-end' geometrylong, higher than wide

 Close to 100% coverage so bigger Fid/Tot volume

• Δx , $\Delta y \ll 1$ cm

• ∆t < 100 psec

Magnetic field in volume

 Idea: to reconstruct vertices, tracks, events as in a TPC (or, as in LiA).

Can we build a photon TPC?

Track Reconstruction Using an "Isochron Transform"

Results of a toy Monte Carlo with perfect resolution

Color scale shows the likelihood that light on the Cherenkov ring came from a particular point in space. Concentration of red and yellow pixels cluster around likely tracks

Work of Matt Wetstein (Argonne,&Chicago) in his spare time (sic)

Works on GEANT events too

Matt Wetstein; ANL&UC

28

Application to Colliders

At colliders we measure the 3-momenta of hadrons, but can't follow the flavor-flow of quarks, the primary objects that are colliding. 2-orders-of-magnitude in time resolution would all us to measure ALL the information=>greatly enhanced discovery potential.

t-tbar -> W+bW-bbar-> e+ nu+c+sbar+b+bbar

A top candidate event from CDF- has top, antitop, each decaying into a W-boson and a b or antib. Goal- identify the quarks that make the jets.

Specs:

Signal: 50-10,000

photons

Space resolution: 1 mm

Time resolution 1 psec

Cost: <100K\$/m2:

2003- Aspen Exptl Summary Talk

Visions of Where Are We Going In Experimental Particle Physics

Detectors Continued

My choice for development is time-of-flight (!?). Precise measurement of the 3-vector, the point of origin, and the particle type gives all the information possible about each particle.

If we could measure with $\sigma = 1$ psec (yes) in a path length of 1.5m (e.g. CDF), get $1 \sigma \pi - K$ separation at $p_T = 25$ GeV.

Is this crazy?

- There exist GaAs Schottky photodiodes with σ ~ 1 psec, so no law of nature precludes it.
- Need a fast source of light-e.g. Cherenkov radiation.
- Light cannot bounce- has to go straight in.
- Need spatial resolution $< 300 \mu \text{m}$ for $\delta t = 1$ psec
- Find the collision 'start' time by measuring the time of tracks relative to each other.
- Have to calibrate entire volume in situ- need lots of π, K, p,...

So, could we build an outer layer for a central (solenoidal) detector with good spatial resolution and segmentation such that for every track with $p_T < 25$ GeV we measure not only p_x, p_y, p_z , but also its flavor content?

Invitation from Joe Lykken and Maria Spiropulu- led to psec TOF

30

HJF

Aspen Winter Conference

Jan. 19-26, 2003

Colliders: Differential TOF

Rather than use the Start time of the collision, measure the difference in arrival times at the beta=c particles (photons, electrons and identified muons) and the hadrons, which arrive a few psec later.

Medical Imaging (PET)

Can we solve the depth-of-interaction problem and also use cheaper faster radiators?

Alternating radiator and cheap 30-50 psec planar mcp-pmt's on each side

Simulations by Heejong Kim (Chicago)

Sampling calorimeters based on thin cheap photodetectors with correlated time and space waveform sampling

Proposal: Alternating radiator and cheap 30-50 psec thin planar mcp-pmt's on each side (needs simulation work)

Cherenkov-sensitive Sampling Quasi- Digital Calorimeters

A picture of an em shower in a cloud-chamber with ½" Pb plates (Rossi, p215- from CY Chao)

A `cartoon' of a fixed target geometry such as for JPARC's KL-> pizero nunubar (at UC, Yao Wah) or LHCb

A 'Quasi-digital' MCP-based Calorimeter

Idea: can one saturate pores in the the MCP plate s.t.output is proportional to number of pores. Transmission line readout gives a cheap way to sample the whole lane with pulse height and time- get energy flow.

Oswald Siegmund, Jason McPhate, Sharon Jelinsky, SSL (UCB)

Note- at high gain the boundaries of the multi's go away

Electron pattern (not a picture of the plate!)- SSL test, Incom substrate, Arradiance ALD. Note you can see the multi's in both plates => ~50 micron resolution

More Information:

- Main Page: http://psec.uchicago.edu
- Library: Workshops, Godparent Reviews, Image Library, Document Library, Links to MCP, Photocathode, Materials Literature, etc.;
- Blog: Our log-book- open to all (say yes to certificate Cerberus, etc.)- can keep track of us (at least several companies do);

The End

BACKUP SLIDES

10/31/2

The 4 'Divisions' of LAPPD

The Large-Area Psec Photo-Detector Collaboration

Version 2.0 Feb. 9, 2010

Organization Chart

R&D Program for the Development of Large-Area Fast Photodetectors

Microchannel Plates-2

Argonne ALD and test Facilities

LAPPD Collaboration: Large Area Picosecond Photodetectors

The Test Stand

- Ultra-fast (femto-second pulses, few thousand Hz) Ti-Sapphire laser, 800 nm, frequency triple to 266 nm
- · Small LIV LED
- · Modular breadboards with laser/LED optics

- In situ measurements of R (Anil)
- Femto-second laser time/position measurements (Matt, Bernhard, Razib, Sasha)
- 33 mm development program
- 8" anode injection measurements

Anil Mani and Bob Wagner

40 Razib Obaid and Matt Wetstein

Microchannel Plates-3

SSL (Berkeley) Test/Fab Facilities

Ossy Siegmund, Jason McPhate, Sharon Jelenski, and Anton Tremsin-Decades of experience (some of us have decades of inexperience?)

MCP Specific Test Facilities

Multiple port UHV lifetest station For single/double MCP detectors

Double chamber UHV test station for single/double MCP detectors

Both have support electronics

O Collaboration (VolkShop, O/10/10

Microchannel Plates-4b

Performance:

Ossy Siegmund, Jason McPhate, Sharon Jelinsky, SSL/UCB

Noise (bkgd rate). <=0.1 counts/cm²/sec; factors of few > cosmics (!)

Microchannel Plates-4d

Performance: burn-in (aka `scrub')

Measurements by Ossy Siegmund, Jason McPhate, Sharon Jelinsky, SSL/UCB

First Pulses From an 8" MCP

Matt Wetstein, Bernhard Adams, Razib Obaid, Sasha Vostrikov (ANL and UC)

average arrival time (picoseconds) versus position (mm)

Photocathodes

Subject of next talk by Klaus- touch on here only briefly

LAPPD goal- 20-25% QE, 8"-square

2 parallel efforts: SSL (knows how), and ANL (learning)

First cathodes made at ANL

Burle commercia

Photocathodes-2

Subject of next talk by Klaus

SSL has years of experience making bialkali photocathodes-They are our treasury bonds (Swiss francs?) in the LAPPD 'portfolio of risk'

8" Photocathode Chamber

Hermetic Packaging

Top Seal and Photocathode- this year's priority

Tile Development Facility at ANL

Production Facility at SSL/UCB

Commercial RFI for 100 tiles (Have had one proposal for 7K-21K tiles/yr)

The End

