Precision Measurements, Small Crosssections, and Non-Standard Signatures: The Learning Curve at a Hadron Collider Henry Frisch

Enrico Fermi Institute and Physics Dept University of Chicago

Lecture 1: Introduction to Collider Physics

Lecture 2: Tevatron Jets; W,Z,y; Top, Bottom

Lecture 3:

- 1) Searching for the Higgs
- 2) Searching for Not-SM events
- 3) The Learning Curve at a Collider
- 4) Unsolved Problems

Acknowledgements

- Thanks to many CDF and D0 colleagues whose work I'll show... Also SM MC generator folks (these are the heros- we need more of them!)
- Apologies to D0- I tend to show much more CDF than D0 as I know it much better (happy for help on this).
- Opinions, errors, and some of the plots are my own, and do not represent any official anything.

Note-These lectures are frankly pedagogical- apologies to the experts in advance..

QCD Results

- At lower root-s reach farther in xT = pT/(root-s/2)
- Large xT corresponds to large x: sensitive to the valence quark distributions
- Shortest-distance (biggest momentum transfer) collisions observed sensitive to new geometric crossections, thresholds (e.g. black holes?)
- W+jets, Z+jets, gamma+jets crucial backgrounds to new physics- we have to be able to predict the SM contribution to subtract off and get the new!
- Many critical details- underlying event, trigger biases, energy scales, fake rates for photons, taus, electrons, rapidity gaps,...- a wealth of important measurements to be made.

High PT Jet Production and PDF's

Jets are overwhelming – the dominant feature at a collider!

High PT Jet Production and PDF's

High PT Jet Production and PDF's

Really remarkable agreement with CTEQ PDF's in Mass(JJ)
Note # of decades, systematic uncertainty bands

Gamma+Jet Crossections

'Compton Scattering'- glue-q -> q-photon (would be (Arthur Holly) be surprised!)

Tests understanding of the gluon PDF

Z+jet Production- THE Standard Candle

Really remarkable agreement with CTEQ PDF's - note # of decades, systematic uncertainty bands

Z+jet Production and PDF's

Jet Shape in eta-phi space (R) Energy flow in |Delta-y|=0.7

Really remarkable agreement with CTEQ PDF's - note

of decades, systematic uncertainty bands

EWK Results (not updated- apologies)

- At lower root-s the ratio of W/QCD-jet production is 10X larger at the Tevatron than the LHC, due to being at larger x, as $m^2 = (x_1 \ x_2)$ s
- Unlike at LEP, the 'beam energy' is a continuumthere is nothing external to set the scale of energies. The W and Z provide calibration for the energy (calorimeter) and momentum (tracking) scales.
- Many models of NP have a quantum number conserved by QCD, but not by EWK (e.g. flavor), so final states will involve W's, Z's,...
- Cascade decays (e.g. in SUSY) often end up in W's, Z's, photons..- low transverse velocites => low boosts
- So scale of missing-Et, lepton pt thresholds is ~20 GeV (1/2 of 1/2 MW)- remarkably low..
- Precision measurements will require a good understanding of multiple parton interactions, multiple interactions, ISR, FSR, ...long learning curve

Z-γ Interference

Run 1 CDF two
highest mass events
were `backwards'sensitive to highermass Z's through
interference.

Lovely gamma-Z interference for QM class...

AAAV m... m.g on Fund. Physics:

Above the Poles:

The W Width Direct Measurement

Idea (HF, Sacha Kopp, J. Rosner)- Breit-Wigner should fall slower than resolution (power law vs Gaussian, hopefully)...

Insensitive to radiative corrections- good place to look for new Jacobian peaks- see Rosner, Worah, and Takeuchi, PRD49,1363 (1994) (hep-ph/9309307)

From D0-MC

200 hysics:

Above the Poles: The W Width Direct Measurement

Systematics are largely from the Z, hence statisticslimited: note Z/W is 1.25 at pt=100, 1.5 at pt=200 (Arnold and Reno, Nucl Phys B319, 37, 1989)

W Asymmetry

W Asymmetry

CTEQ6 comparison with uncertainties

Wish List Item: Answer to Q: is the ratio

$$\frac{W^{+} \rightarrow e^{+}}{Z^{\circ}/\gamma \rightarrow e^{+}}$$

vs η , $P_{T, (mass)}$

sensitive to PDF's in a different way?

New (Jan. 5, 07) CDF W Mass

A Systematics Intensive Measurement..
This is a precision spectrometer!

Data from Feb. 02-Sept 03 218 pb⁻¹ for e; 191 pb⁻¹ for μ

First, Calibrate the spectrometer momentum scale on the J/Psi and Upsilon-material traversed by muons really matters in electron Wmass measurement. (discussed in Lecture 1).

Note: This is a small fraction of data taken to date- this is to establish the calibrations and Mechniques (soutar) for Run II. 16

New (Jan. 5, 07) CDF W Mass

Run Ib Problem Now Solved: 2 Calibrations of EM calorimeter:

Zmass ≠ E(cal)/p(track)

Electron and Muon Transverse Mass Fits

- 1. Electrons radiate in material near beam-pipe, but cal (E) gets both e and g; spectrometer sees only the momentum (not the g):
- 2. Use peak of E(cal)/p(spectrometer) to set EM calorimeter scale
- 3. Use tail of E/p to calibrate the amount of material
- 4. Check with mass of the Z. Run I didn't work well (Ia, Ib). Now understood (these were 2 of the dragons).

New (Jan. 5, 07) CDF W Mass

See William Trischuk's talk for details, explanations

	electrons	muons	common
W statistics	48	54	0
epton energy scale	30	17	17
epton resolution	9	3	-3
Recoil energy scale	9	9	9
Recoil energy resolution	7	7	7
election bias	3	1	0
epton removal	8	5	5
ackgrounds	8	9	0
T(W) model (g2,g3)	3	3	3
arton dist. Functions	11	11	11
ED rad. Corrections	11	12	11
otal systematic	39	27	26
Total	62	60	

Systematic uncertainties shown in green: statistics-limited by control data samples

Note: This is with only 0.2 fb⁻¹ and 1 experiment: have ~2 fb⁻¹...

	W mass (MeV)
DELPHI	80336 ± 67
L3	80270 ± 55
OPAL	80416 ± 53
ALEPH	80440 ± 51
CDF-I	80433 ± 79
D0-I	80483 ± 84
LEP Average	80376 ± 33
Tevatron-I Average	80454 ± 59
Previous World Average	80392 ± 29
CDF-II (preliminary)	80413 ± 48
New Tevatron Average	80429 ± 39
New World Average	80398 ± 25

CDF Wmass group believes each systematic in green scales like a statistical uncertainty =>

N.B. 48 Mey/80 GeV

We will enter another round of learning at 600-1000 pb (typically a 3 year cycle or so) http://www.physics. Lecture 2

Systematics scale with Statistics!

Take a systematics-dominated measurement: e.g. the W mass.

Dec 1994 (12 yrs ago)-

'Here Be Dragons' Slide: remarkable how precise one can do at the Tevatron (MW, Mtop, Bs mixing, ...)- but has taken a long timelike any other precision measurements requires a learning process of techniques, details, detector upgrades....

Top Quark Results

- Top is uniquely heavy- only fermion heavier than the W or Z (in fact, mtop ~MW+MZ to high precision?!
- Top is unique- Yukawa =0.985+/-0.015.
- CDF and D0 are statistics-limited for top studies-cross-section ~ 8 pb, so in 1 fb-1 make only 8000, and BR's (e.g. lepton+jets=24/81) and acceptance x eff mean get only ~350 ttbar events with a b-tag per invfb.
- BUT, now for the first time we're getting a large enough sample to study the production and the decay using the data themselves for systematics-e.g. using the reconstructed W's in top decay to determine the jet energy scale. It's an exciting opportunity....

TTbar-> WbWb->(ev)(jj)bbar

21

Precision Measuremnt of the Top Mass

M(2-jets)- should be M_W

M(3-jets)- should be M_{top}

CDF e/ μ -Met+4 Jets (1b) - 0.94 fb⁻¹, ~170 ttbar events XXXV Int. Mtg on Fund. Physics:

6/8/2007 Lecture 2 22

Precision Msremnt* of the Top Mass

*like Mrenna

CDF Lepton+4jets: Systematics:

Jet Energy Scale (JES)
Now set by MW (jj)

Note FSR, ISR, JES, and b/j JES dominate- all measurable with more data, at some level...

Systematic uncertainties (GeV/c²)				
JES residual	0.42	4		
Initial state radiation	0.72	2		
Final state radiation	0.76	1		
Generator	0.19			
Background composition and modeling	0.21			
Parton distribution functions	0.12			
b-JES	0.60	3		
b-tagging	0.31			
Monte Carlo statistics	0.04			
Lepton p _T	0.22			
Multiple Interactions	0.05			
Total	1.36			

Again- systematics go down with statistics- no `wall' (yet).

Precision Measurement of the Top Mass

Aspen Conference Annual Values (Doug Glenzinski Summary Talk)

Jan-05: $\triangle Mt = +/- 4.3 \text{ GeV}$

Jan-06: $\Delta Mt = +/- 2.9 \text{ GeV}$

Jan-07: $\Delta Mt = +/- 2.1 \text{ GeV}$

Note we are doing almost 1/root-L even now

Setting JES with MW puts us significantly ahead of the projection based on Run I in the Technical Design Report (TDR). Systematics are measurable with more data (at some level- but W and Z are bright standard candles.)

Aside- One old feature may be going away-top mass in dileptons was too low.

 $M_{top}(All Jets) = 173.4 \pm 4.3 \text{ GeV/c}^2$

 $M_{top}(Dilepton) = 167.0 \pm 4.3 \text{ GeV/c}^2$

 $M_{ton}(Lepton+Jets) = 171.3 \pm 2.2 \text{ GeV/c}^2$

(Rainer Wallny, Aspen 07)

Dilepton a little low, but statistically not significant– also D0 number not low now..

New Physics in Top Production?

Fit ttbar system with known top mass(es) and compare M_{tt} , pT_{tt} , eta_{tt}, X, angular distributions, etc. with SM expectations. Global fit allows multi-dimensional comparisons. (Here is only M_{tt}, for reasons I don't understand- Dan?)

6/8/2007

XXXV Int. Mtg on Fund. Physics: Lecture 2

New Physics in Top Decay?

- 1. Fit for V-A, V+A, longitudinal: So far no smoking guns
- 2. Charged Higgs (e, mu+tau+b)
- 3. Run I odd dilepton distributions

Huge effort in prediction number of jets in top events ('Njets')

Single b-tag events

6/8/2007

Double b-tag events

Lecture 2 28

• previous limits (95% C.L.):

Run II DØ: $< 5.0 \text{ pb } (370 \text{ pb}^{-1})$ Run II CDF: $< 3.1 \text{ pb } (700 \text{ pb}^{-1})$

t-channel (tqb)

- $\sigma_{NLO} = 1.98 \pm 0.25 \text{ pb(*)}$
- previous limits (95% C.L.):

6 Run II DØ: $< 4.4 \text{ pb } (370 \text{ pb}^{-1})$ Run II CDF: $< 3.2 \text{ pb } (700 \text{ pb}^{-1})$

Situation somewhat confused-

Expect 1 and 2 pb in s and t channels,

XXXV respective Physical Lecture more data, wits 29

High Precision B-physics; Mixing, B_s->µµ

High Precision B-physics; Mixing

Time-domain plot- not the discovery vehicle, but what I wanted to see...

D0 High Precision B-physics; $B_s -> \mu\mu$

Result: D0 has recently analyzed 2 fb-1- Run IIb didn't add much, but the combination gives world's best limit:

BR(Bs $\rightarrow \mu\mu$) < 9.3×10⁻⁸ @95% *C*L

BR(Bs $\rightarrow \mu\mu$) < 7.5×10⁻⁸ @90% *C*L

High Precision B-physics; $B_s -> \mu\mu$

Copious Source of B's; Mass Resolution and Trigger

Result: D0 and CDF haveWorld's best limits: CDF::

BR(Bs
$$\rightarrow \mu\mu$$
) < 1.0x10-7 @95% CL

BR(Bd
$$\rightarrow \mu\mu$$
) < 3.0x10-8 @95% CL

BR(Bs
$$\rightarrow \mu\mu$$
) < 8.0x10-8 @90% CL

BR(Bd
$$\rightarrow \mu\mu$$
) < 2.3×10-8 @90% CL

This is with 780 pb-1; have more, and have improved analysis sensitivity-new # very soon. Getting to have teeth (imagine 10X data+>Accept.).

One of a number of rare-decay mode searches; B_s->µµX; also new states with B quarks, (whole industry). Physics: Lecture 2

CDF can trigger on displaced tracks (Luciano Ristori and the SVT)

XXXV Int. Mtg on Fund. Physics:

6/8/2007

Lecture 2

34

CDF Observation of New Baryon States

XXXV

4 New Baryons Discovered

$$\Sigma b(*) \pm \rightarrow \Lambda b0\pi \pm; \quad \Lambda b0 \rightarrow \Lambda c + \pi$$
; $\Lambda c + \rightarrow pK - \pi +$

we measure:

```
m(\Sigmab+) = 5808+2.0-2.3(stat.) \pm

1.7(syst.) MeV/c2

m(\Sigmab ) = 5816+1.0-1.0(stat.) \pm

1.7(syst.) MeV/c2

m(\Sigmab*+) = 5829+1.6-1.8(stat.) \pm

1.7(syst.) MeV/c2

m(\Sigmab* ) = 5837+2.1-1.9(stat.) \pm

1.7(syst.) MeV/c2
```


6/8/2007

CDF Observation of New Baryon States

Lambda-b serves as calibration – who would athunk it that at 1.96 TeV you could do this? Shows the power of the SVT!

Summary of Lecture 2: Present Status

- 1. Tevatron running well expect >= 1.5-2 fb-1/yr/expt of all goes well (could even be somewhat better- there are more pbars).
- 2. We have entered the era of precision top physics (working at the % level, and are learning how to deal with systematics at that level (e.g. jet-energy scale from the W-> jj decays). Many theoretical problems are being worked on Njet matching, ...
- 3. Remarkable low-mass hadron reconstruction from CDF SVT- precision B-physics..
- 4. Entering Higgs search era-need more luminosity, and a much higher degree of sophistication for jet resolution, trigger usage strategy, Int. MtgCDFid. L. Zickupgrade, e.g. 37

THE END

XXXV Int. Mtg on Fund. Physics:

The Quarkarks

AXAV Int. IVITG ON FUNG. Physics: Lecture 2

BACKUP SLIDES

New CDF Higgs to taus result:

Tau ID depends on good tracking, photon ID- clean environment (all good at the Tevatron). Key numbers are efficiency and jet rejection:

This may be an area in which the Tevatron is better.

Backup-lum on tape

Precision Msremnt* of the Top Mass

*like Mrenna

CDF Lepton+4jets: Systematics:

Jet Energy Scale (JES)
Now set by MW (j.j)

Note FSR, ISR, JES, and b/j JES dominate- all measurable with more data, at some level...

Systematic uncertainties (GeV/c²)		
JES residual	0.42	4
Initial state radiation	0.72	2
Final state radiation	0.76	1
Generator	0.19	
Background composition and modeling	0.21	
Parton distribution functions	0.12	
b-JES	0.60	3
b-tagging	0.31	
Monte Carlo statistics	0.04	
Lepton p _T	0.22	
Multiple Interactions	0.05	
Total	1.36	

Again systematics go down with statistics - no `wall' (yet).

The Importance of the M_W - M_{Top} - M_{Higgs} Triangle

- Much as the case for Babar was made on the closing of the CKM matrix, one can make the case that closing the M_W M_{Top} - M_{Higgs} triangle is an essential test of the SM.
- All 3 should be measured at the LHC- suppose the current central values hold up, and the triangle doesn't close (or no H found!). Most likely explanation is that precision M_W or M_{Top} is wrong. Or, H -> 4tau or worse, or, ...? (low Et, met sigs)
- The systematics at the Tevatron are completely different from those at the LHC- much less material, known detectors, qbarq instead of gg, # of interactions, quieter events (for $M_{W)}$.
- =>Prudent thing to do is don't shut off until we see M_W M_{Top} - M_{Higgs} works.

MW-Mtop Plane with new CDF #'s

 M_W = 80.398 \pm 0.025 GeV (inc. new CDF 200pb⁻¹) M_{Top} = 171.4 \pm 2.1 GeV (ICHEP 06) => MH =80+36-26 GeV; MH<153 GeV (95% C.L.)

MH2007 189 GeV w. LERIIntlimintful (MhysiGraunewald, Pvt.Comm.)

Higgs Limits have gone faster than 1/root-L: faster than 1/L, even

Precision Measurements, Small Crossections, and Non-Standard Signatures: The Learning Curve at a Hadron Collider Henry Frisch

Enrico Fermi Institute and Physics Dept University of Chicago

Lecture 1: Introduction to Collider Physics

Lecture 2: Tevatron Jets; W,Z,y; Top, Bottom

Lecture 3:

- 1) Searching for Higgs and Not-SM
- 2) The Learning Curve at a Collider
- 3) Unsolved Problems

Note-These lectures are frankly pedagogical- apologies to the experts in advance..

A real CDF Top Quark Event

Canf/8627 follow the color floxxxthrwaghnkavirs, cetrairm, bottom? TOF!