

Recent Progress in the High-Gain FEL Theory

Zhirong Huang

Argonne National Laboratory

ICFA FLS May 1-4, 2002, Spring-8

Introduction

• A fourth-generation light source: a high-gain x-ray FEL operated in SASE mode

- 3D theory in the exponential growth regime well developed (energy spread, emittance, diffraction, guiding)
- Tremendous progress in high-gain experiments wavelength down to < 100 nm saturation achieved

• Stimulate better understandings of high-gain theory, some aspects are discussed in this talk (mostly based on collaborative work with K.-J. Kim)

ICFA FLS May 1-4, 2002, Spring-8

A

Theory: Overview

Start-up stage

External signal or spontaneous radiation interacts with the e-beam resonantly at undulator λ

Energy modulation → density modulation (microbunching) →
 coherent radiation at λ →
 exponential growth (L_G)

At sufficiently high power, electrons fully microbunched and trapped in the ponderomotive field \rightarrow reach saturation (P_{sat})

ICFA FLS May 1-4, 2002, Spring-8

Start-up Process

- Spontaneous emission: many transverse modes
- FEL instability favors a particular (fundamental) mode
- ➔ proper modal decomposition for initial value problem

$$\frac{dP}{d\mathbf{w}} = g_A \left[\left(\frac{dP}{d\mathbf{w}} \right)_{\text{signal}} + \left(\frac{dP}{d\mathbf{w}} \right)_{\text{noise}} \right] \exp \left(\frac{Z}{L_G} - \frac{(\Delta \mathbf{w})^2}{2\mathbf{s}_w^2} \right)$$

- Effective start-up noise (for SASE): power of the fundamental mode over the first two gain length L_G , can increase with energy spread and emittance through L_G
- 2D Solution determines the radiation energy level in exponential gain regime

ICFA FLS May 1-4, 2002, Spring-8

Advanced Photon

Source

A

Transverse and Temporal Properties: Review

- Diffraction + Gain → transverse mode selection
 ⇒ fundamental mode dominates (gain guiding)
 ⇒ good transverse coherence
- SASE is a chaotic light temporally

Coherence length = $(2\sigma_{\omega})^{-1}$ ($\propto \sqrt{z}$) << bunch length

SASE intensity fluctuation (Γ distribution)

$$\frac{\Delta I}{I} = \frac{1}{\sqrt{M}}$$
, where $M = \frac{\text{bunch length}}{\text{coherence length}}$

ICFA FLS May 1-4, 2002, Spring-8

Transverse and Temporal Properties: Interplay

- Transverse coherence somewhat affected by "large" SASE bandwidth (Saldin et al.)
- A different fundamental mode at each wavelength
- Smearing of radiation transverse phase space ellipses

Transverse coherence: LEUTL~ 90%, LCLS ~ 97%

Nonlinear Harmonic Generation

- FEL instability creates energy and denstiy modulation at λ ,
- Near saturation, strong bunching at fundamental produces rich harmonic components

small signal, linear regime

near saturation, nonlinear regime

Coherent harmonics determined by fundamental

- → gain length L_G/n
- → transverse coherence
- ➔ temporal structures

ICFA FLS May 1-4, 2002, Spring-8

• Theory predicts third harmonic reaches 1% of fundamental, verified by recent high-gain experients (HGHG and VISA)

ICFA FLS May 1-4, 2002, Spring-8

Advanced Photon Source

Saturation Behaviors

• XFELs operate in saturation for max. power/stability, seeding schemes go deep saturation to reduce fluctuation

• Electrons trapped by combined radiation+undulator fields

 Radiation power stays roughly constant, but phase advances due to the beam-radiation interaction
 an effective index of refraction (>1) (Scharleman et al.)

ICFA FLS May 1-4, 2002, Spring-8

Advanced Photon Source

Α

Refractive Guiding

 Guided mode that carries fixed power → constant FWHM some excess power diffracts out → increased rms size other excess power stays oscillatory

ICFA FLS May 1-4, 2002, Spring-8

Advanced Photon Source

A

Guided Mode after Saturation

- Valid when emittance < $\lambda/4\pi$
- For XFELs, emittance > $\lambda/4\pi$, any guiding?

ICFA FLS May 1-4, 2002, Spring-8

Sideband Instability

Before saturation, SASE spectrum undergoes gain narrowing
After saturation, spectrum redshifts and broaden because electron's synchrotron motion in the bucket generates sidebands

• LEUTL shows such a behavior (Sajaev et al.)

Average RMS spectrum width

Advanced Photon

Source

A

Conclusion

• The excitement of XFELs leads to progress in all areas of high-gain FEL research (including theory)

• Evolution of FEL fundamental and harmonic radiation can be completely determined for simple e-beam distributions from start-up to near saturation

• Partial understanding of saturation behavior, more needed in combination with numerical simulations

• Quantum effects (Schroeder et al.) are negligible in XFELs except for quantum fluctuation due to spontaneous radiation (Saldin et al.)

ICFA FLS May 1-4, 2002, Spring-8