

Advanced Photon Source

Flat Beam Generation

Kwang-Je Kim Argonne National Laboratory and The University of Chicago

26th Advanced ICFA Beam Dynamics Workshop on Nanometre-Size Colliding Beams Lausanne, Switzerland

September 2-6, 2002

Flat Beam Generation

Beam adapter: Ya. Derbenev

Theory:

A. Burov, S. Nagaitsev, Ya. Derbenev

Application to flat beam:

R. Brinkmann, Ya. Derbenev, and K. Floetmann

Experiment:

FNPL at Fermilab

D. Edwards, H. Edwards, et al.

Schematic rendition of the layout at Fermilab for flat beam experiment

Phase Space Coordinates

- After cathode Ι. $X_{1} = (x, x', y, y')$
- After solenoid (short) $\kappa = \left(\frac{eB}{2P_s}\right)$ X_{II} = (x,x' + κ y,y,y' κ x'), Ш.

III. After quadrupole channel

$$X_{III} = R^{-1} \begin{bmatrix} M, & 0 \\ 0 & FM \end{bmatrix} R \cdot X_{II}$$

$$R = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}, M = \begin{bmatrix} \cos \mu, & \beta \sin \mu \\ -(\sin \mu)/\beta, & \cos \mu \end{bmatrix}, F = \begin{bmatrix} 0, & \beta \\ -\frac{1}{\beta}, & 0 \end{bmatrix}$$
skew quadrupole channel 90° phase advance

• Match by choosing β .

$$X_{IV} = \begin{pmatrix} 2bx + 2ay + \beta(ax' - by') \\ -\frac{2a}{\beta}x + \frac{2b}{\beta}y + bx' + ay' \\ -\beta(bx' - ay') \\ ax' + by' \end{pmatrix}$$

$$a = \frac{1}{2}(\cos \mu + \sin \mu), b = \frac{1}{2}(\cos \mu - \sin \mu)$$

У

......

Χ

• Match
$$\beta \approx \kappa^{-1}$$

Flat beam for x' = y' = 0!

Beam Moment Matrix

$$\begin{split} \boldsymbol{\Sigma} &= \left\langle \boldsymbol{X} \boldsymbol{X}^{\mathsf{T}} \right\rangle = \begin{pmatrix} \left\langle \boldsymbol{x}^{2} \right\rangle, \left\langle \boldsymbol{x} \boldsymbol{x}' \right\rangle, \left\langle \boldsymbol{x} \boldsymbol{y} \right\rangle \left\langle \boldsymbol{x} \boldsymbol{y} \right\rangle \\ \left\langle \boldsymbol{x}' \boldsymbol{x} \right\rangle, \left\langle \boldsymbol{x}'^{2} \right\rangle, \left\langle \boldsymbol{x}' \boldsymbol{y} \right\rangle, \left\langle \boldsymbol{x}' \boldsymbol{y}' \right\rangle \\ \left\langle \boldsymbol{y} \boldsymbol{x} \right\rangle, \left\langle \boldsymbol{y} \boldsymbol{x}' \right\rangle, \left\langle \boldsymbol{y}^{2} \right\rangle, \left\langle \boldsymbol{y} \boldsymbol{y}' \right\rangle \\ \left\langle \boldsymbol{y}' \boldsymbol{x} \right\rangle, \left\langle \boldsymbol{y}' \boldsymbol{x}' \right\rangle, \left\langle \boldsymbol{y}' \boldsymbol{y} \right\rangle, \left\langle \boldsymbol{y}'^{2} \right\rangle \end{pmatrix} \end{split}$$

$$\begin{split} \boldsymbol{\Sigma}_{\mathsf{I}} &= \begin{pmatrix} \boldsymbol{\sigma}^{2} & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\sigma}'^{2} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma}^{2} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma}'^{2} \end{pmatrix} \text{ (round beam, no correlation)} \end{split}$$

 $\mathsf{Det}\,(\Sigma_{\mathsf{I}}) = (\sigma\sigma')^2$

Beam Moment Matrix after Exiting Solenoid

$$\begin{split} \boldsymbol{\Sigma}_{II} &= \begin{pmatrix} \boldsymbol{\sigma}^2 & \boldsymbol{0} & \boldsymbol{0} & -\kappa\boldsymbol{\sigma}^2 \\ \boldsymbol{0} & \boldsymbol{\sigma'}^2 + \kappa^2\boldsymbol{\sigma}^2 & \boldsymbol{\kappa}\boldsymbol{\sigma}^2 & \boldsymbol{0} \\ \boldsymbol{0} & \kappa\boldsymbol{\sigma}^2 & \boldsymbol{\sigma}^2 & \boldsymbol{0} \\ -\kappa\boldsymbol{\sigma}^2 & \boldsymbol{0} & \boldsymbol{0} & \boldsymbol{\sigma'}^2 + \kappa^2\boldsymbol{\sigma}^2 \end{pmatrix} = \begin{bmatrix} \boldsymbol{\epsilon}_X \, \boldsymbol{T}, & \boldsymbol{\mathcal{L}} J \\ -\boldsymbol{\mathcal{L}} J, & \boldsymbol{\epsilon}_X \, \boldsymbol{T} \end{bmatrix} \\ \boldsymbol{T} &= \begin{bmatrix} \boldsymbol{\beta} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1}_{\boldsymbol{\beta}} \end{bmatrix}, \quad \boldsymbol{J} = \begin{bmatrix} \boldsymbol{0} & \boldsymbol{1} \\ -\boldsymbol{1} & \boldsymbol{0} \end{bmatrix} \\ \boldsymbol{\epsilon}_X &= \sqrt{\boldsymbol{\sigma}^2 \left(\boldsymbol{\sigma'}^2 + \kappa^2 \boldsymbol{\sigma}^2 \right)}, \quad \boldsymbol{\mathcal{L}} = \kappa \boldsymbol{\sigma}^2 \\ \boldsymbol{\beta} &= \frac{\boldsymbol{\sigma}}{\sqrt{\boldsymbol{\sigma'}^2 + \kappa^2 \boldsymbol{\sigma}^2}} \end{split}$$

• Emittance = phase space density = Det $(\Sigma_{\parallel}) = (\sigma \sigma')^2$

Beam Moment Matrix After Quad Transport

(Chun-xi Wang)

• Matching by
$$\beta = \frac{1}{\kappa} \sqrt{1 - \frac{\beta^2 {\sigma'}^2}{\sigma^2}}$$

$$\Sigma_{\text{III}} = \frac{1}{2} \begin{bmatrix} \beta \varepsilon_{\text{x}} & 0 & 0 & 0 \\ 0 & \varepsilon_{\text{x}} & 0 & 0 \\ 0 & 0 & \beta \varepsilon_{\text{y}} & 0 \\ 0 & 0 & 0 & \varepsilon_{\text{y}} \\ 0 & 0 & 0 & & \beta \end{bmatrix}$$
!!
$$\varepsilon_{\text{x}} = \frac{1}{2} \begin{bmatrix} \frac{(1 + \kappa \beta)^2}{\beta} \sigma^2 + \beta {\sigma'}^2 \\ \beta & \sigma^2 + \beta {\sigma'}^2 \end{bmatrix}, \quad \varepsilon_{\text{y}} = \frac{1}{2} \begin{bmatrix} \frac{(1 - \kappa \beta)^2}{\beta} \sigma^2 + \beta {\sigma'}^2 \\ \beta & \sigma^2 + \beta {\sigma'}^2 \end{bmatrix}$$

• Emittance = $\varepsilon_x \varepsilon_y = (\sigma \sigma')^2$

• Flat beam ratio:

$$\frac{\varepsilon_{\rm x}}{\varepsilon_{\rm y}} \approx 4 \frac{\kappa^2 \sigma^2}{{\sigma'}^2}$$

Another Matching $\beta = \kappa^{-1}$

$$\Sigma_{III} = \begin{bmatrix} \varepsilon_{x} \mathbf{T} & \varepsilon_{xy} \mathbf{S} \\ \varepsilon_{xy} \mathbf{S} & \varepsilon_{y} \mathbf{T} \end{bmatrix}$$
$$\varepsilon_{x} = \frac{2\sigma^{2}}{\beta} + \frac{\beta\sigma'^{2}}{2}, \ \varepsilon_{y} = \frac{\beta}{2}\sigma'^{2}, \quad \mathbf{T} = \begin{bmatrix} \beta, & 0 \\ 0, & \frac{1}{\beta} \end{bmatrix}, \quad \varepsilon_{xy} = \frac{\beta\sigma'^{2}}{2}$$

$$\begin{split} \mathbf{S} &= \begin{bmatrix} -\beta \cos \mu, & \sin 2\mu \\ \sin 2\mu, & \frac{\cos \mu}{\beta} \end{bmatrix} & \text{Det } \mathbf{S} = -1 \\ \epsilon_y \epsilon_x &= (\sigma \sigma')^2 + \left(\frac{\beta {\sigma'}^2}{2}\right)^2, & \frac{\epsilon_x}{\epsilon_y} = \left(\frac{2\sigma}{\beta \sigma'}\right)^2 + 1 \end{split}$$

Det
$$\Sigma_{IV} = \varepsilon_x \varepsilon_y - (\varepsilon_{xy})^2 = (\sigma \cdot \sigma')^2$$

FermiLab/NICADD PhotoInjector

Layout taken from PAC01 paper of D. Edwards etc.

(Gauss/cm) (Gauss); Br/r ВZ

Cathode and beam prior to the skew-quad channel

VC is an image of the laser spot on the cathode.

Beam energy at the exit of the 1.6 RF gun is about 4 MeV. After the 9-cell SC cavity, beam energy is about 16 MeV. Notice that X3 is after the 9-cell SC cavity. Flat electron beam profile at 9.6m from the cathode (XL6) and horizontal and vertical beamlets used for emittance measurements downstream at XL7 and XL8. The transverse emittance ratio is about 41 in the example shown here.

Beam Specs for Linear Colliders

	TESLA	NLC	CLIC
Q (nc)	3	1.6	0.6
ε_{x} (mm-mrad)	12	4.5	0.68
ε_y (mm-mrad)	0.03	0.1	0.02
$\sqrt{\varepsilon_{x}\varepsilon_{y}}$ (mm-mrad)	0.6	0.7	0.12

Current rate of art:

 $\sqrt{\epsilon_x \epsilon_y}$ ~ 1mm-mrad @ Q \approx 1 nC.