
Exercise 1. In high current, high voltage devices, in order to find the condition of space
charge-limited flow, it is useful to approximate the accelerating region as a pair of
electrodes separated by a flat vacuum gap, as is shown below. When the current flow is
activated, electrons are emitted by the cathode (-) and are accelerated freely in the electric
field until they reach the anode, which they strike, and thus the free current is terminated.
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The arrow shows the direction of motion of the accelerated electrons. Assume the system
can be treated as one-dimensional, that is the gap distance d is much smaller than the
plate width. Assume that the flow is static, with no parameters changing in time. All of
the electrons will have the same velocity v  (in the x -direction) at given point in x .

Since the flow is static, we have that  (x) = J / v(x) , with J  constant.
a) Assume that the electrons are emitted with no kinetic energy at the cathode (at x = 0 ),
which we choose to be at zero potential ( (0) = 0). Show that the (nonrelativistic)

velocity can be written as   v(x) = 2e (x)/ me .

I ∝V 3 / 2,

and find the constant of proportionality (the perveance) between the current and V 3 / 2.

d) Extra credit: How far can you go towards solving this system with the correct

relativistic relation between energy and velocity?

b) Show that the (one-dimensional) Poisson equation in this case can be written in mks
units as
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c) The maximum allowable current density  J  can be derived by solving this differential

equation, subject to these boundary conditions: 
x

= 0  at x = 0 , that is, the electric field

at the cathode is zero due to the charge buildup, stopping the acceleration of the flow, and
of course (d) = V.  Show that the maximum current in this device (known as the Child-
Langmuir limit) is of the form
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Exercise 2. In order to help you derive Busch’s theorem, we refer to the figure above.

The radial fringe field crossed with the longitudinal particle motion gives rise to an

angular kick. This field can be approximated through use of Ampere’s law

1
B = −

Bz

z

a) Assuming Bz is independent of  near the axis, find B ,z( ) as a function of Bz z( ) .

b) Now integrate the angular kick received during a region where the field is changing,

∆p ≅ q v zB
t1

t2

∫ dt = q B
z 1

z2

∫ dz .

You should obtain a very general relation dependent only on the change in Bz.  Show

that Eq. 4.4 is valid under the assumptions given.

z



Exercise 3. This problem shows a transient version of the Child-Langmuir law

governing maximum current, a law an maximum extracted charge, which is relevant

to short pulses in photoinjectors. Because of the existence of image charges at the

cathode, and because the beam is very short as it is emitted ( z =vb t ), a retarding

longitudinal force builds up during the short pulse, rising to be Fz = −eEz = 4 e2Σb

(cgs units) at the back of the beam. Here Σb  is the number of electrons per unit area

emitted, and the field as a function of z s illustrated below. We have for this example

assumed a Gaussian dependence of the emitted beam current on time; the field is

simply proportional to the integral of this current (charge) distribution as one moves

towards the cathode.
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(a) For the LCLS injector parameters, N e− = 6.2 ×109 (1 nC), a=1 mm, calculate the

(uniform) surface charge density of the emitted beam, and the retarding force at

the back of the bunch. What is the maximum charge one can emit before

completely canceling the applied field at injection? For calculations, it helps to

use e2 = remec
2, where the classical radius of the electron is re = 2.82 ×10−15 .



(b) Now look at the case where we use a laser beam with a Gaussian radial intensity

distribution, I( ) = I0 exp − 2 /2 2( ), so the expected surface charge density is

also a radial Gaussian, Σb ( ) = Σ0 exp − 2 /2 2( ) , where Σ0  is obviously the

maximum expected surface charge density. The surface charge density can not,

however, exceed Σ0,max = eE0 /4 e2, because the extracting electric field is

cancelled, leading to an emission profile which looks like the picture below.
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Assuming that Σ0 > Σ0,max , so there is a flat part of the emitted charge density at

Σ0,max , find an analytical expression for the total charge emitted, as a function of

the expected charge in the absence of this limiting effect.


