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Before we start…
– … a big thank you to Peter Schmüser for helping me to 

prepare the lecture.
– … another thank you to the colleagues from the TESLA 

collaboration and the field from superconducting RF 
cavities for the material provided

– … please check out the lecture notes for references. I 
tried to give a lot of primary and secondary literature

• A good introduction into superconducting cavities is given in 
[Padamsee et al. 1998].

• Short review articles are also available [Aune et al. 2000, 
Padamsee 2001].

– … let me inform you that this is a first-timer for me 
giving this type of lecture: Please comment on the stuff 
you didn’t like – and on the things, which you like. 



25.02.02Lutz Lilje DESY

Outline of the lectures
• Theory first … (Lecture 1)

– RF cavities (revisited – see also Juwen Wang)
• A variety of SRF cavities in pictures
• The Pillbox cavity
• Acceleration of a bunched beam

– Superconductivity basics
– RF superconductivity
– Limitations of superconducting  RF (SRF) cavities 

• Diagnostic tools
• Surface and material science
• Defects 

– Thermal conductivity
• Field emission
• Multipacting
• Increased surface resistance at high field
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Outline (continued)
– Practical example: TESLA cavities (Lecture 2)

• What is TESLA?
– Goals for TESLA cavities

• Choice of superconductor
• Design of SRF cavities
• Manufacturing issues
• Surface preparation
• Current state-of-the-art cavity performance
• Higher gradients for TESLA-800

– Electropolishing
– ‘Superstructure’

• Operating SRF cavities
– Cryostats
– RF Couplers
– Low-level RF control
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SRF cavities

• What do they actually look like?  
– Protons
– Ions
– Electrons

• Courtesy H. Padamsee
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• Low Impedance Shape
• Beam Power > 270kW

High luminosity rings (CESR)
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400 MHz
16  Nb/Cu Cavities

LHC
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Beta = 0.8 

Beta = 0.6

800 MHz

SNS (Spallation Neutron Source)
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58 MHz 117 MHz

175 MHz 350 MHz

700 MHz 700 MHz

Rare Isotope Seperator
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Niobium bulk cavities
TESLA 
1,3 GHz

CERN 350 MHz

Darmstadt 3GHz



25.02.02Lutz Lilje DESY

Total >1000 meters
> 5 GV

Livingston plot for SRF cavities
Courtesy H. Padamsee
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Outline of the lecture
• RF cavities

– A variety of SRF cavities in pictures
– The Pillbox cavity
– Acceleration of a bunched beam

• Superconductivity basics
• RF superconductivity
• Limitations of superconducting  RF (SRF) 

cavities 
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Properties of Cavities

J0, J1 Besselfunctions

Example: cylindrically symetric cavity - Pillbox

with

Frequency:

Stored Energy:

Dissipated power:

Geometry factor:Quality factor:
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ß
L (side view)

Electric Field (Pillbox):

Magnetic Field :

D (front view)

TM010 : 
accelerating mode

Other modes : e.g. 
deflecting modes à

Field 
distributions
in cavities
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Field distributions in cavities

Elliptical cavity: Numerical solution for surface fields:

Relations for the surface fields to acclerating gradient:

Epeak/Eacc  = 1,98             minimize this to reduce field emission

Bpeak/Eacc = 4,17 [mT]/[MV/m] minimize because of maximum critical

field of the superconductor  

⇒

⇒
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Equivalent circuit of 
generator-cavity-beam system

• Cavity is a 
resonance circuit

• R is called the shunt 
impedance, this is 
NOT Rsurf !

• Coupler is like a 
transformer (1:N, 
N>>1)
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Equivalent circuit formulas
Cavity quality factor: Coupler (external) quality factor:

Loaded quality factor:

Decay time : Coupling factor :
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Acceleration of 
a bunched beam Incident power 

from Klystron :

Reflected power 
to Klystron :

β = 1

β < 1

β> 1

For beam operation
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Acceleration of a bunched beam 
(see MathCAD example)

• Let’s see what 
happens, when the 
Qext is wrong…
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Outline of the lecture
• RF cavities
• Superconductivity basics
• RF superconductivity
• Limitations of superconducting  RF (SRF) 

cavities 
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Superconductors in magnetic fields  (Type I)

Temperature dependence:

Penetration depth:

Coherence length:
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Superconductors in magnetic fields (Typ II)
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Flux penetration into 
a superconductor
Electron holography is 
used to make magnetic 
fluxons visible 
(Tonomura et al.)

Fluxons stick to 
defects !

This is good for 
magnets, but bad 
for cavities (check 
homework).
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Critical magnetic field for the RF case

Niobium properties:Superheating fields:

• RF field at 1,3 GHz is on for less than 10-9 s
• If there are no nucleation centers (surface defects...) the penetration of the

magnetic field can be delayed.  Superheating!

⇒ Theoretical accelerating field limits

What is really 
the fundamental 
limit for RF 
cavities?

}
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Outline of the lecture
• RF cavities
• Superconductivity basics
• RF superconductivity
• Limitations of superconducting  RF (SRF) 

cavities 
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RF superconductivity

The superconducting Cooper pairs have 
inertia. Therefore the unpaired 
normalconducting ‘feel’ also a part of the 
electromagnetic RF (ac) fields. 

⇒ Superconductors have for temperatures  
T>0 K a surface resistance! 
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Electric conductivity and Surface resistance 

Normalconducting electrons:

Superconducting electrons:

Combine both nc and sc electrons:

Electric conductivity:

Ohm’s Law:
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Electric conductivity and Surface resistance

– Resistance depends
• strongly on the temperature, we need 2 K
• quadratically on frequency: Limit for 3 GHz would be 30 MV/m.
• on the mean free path, what purity do we need?

Surface resistance 
(analogous to skin depth):

Surface resistance for 
superconductors in BCS 
theory:

Effective penetration depth:



25.02.02Lutz Lilje DESY

Surface resistance  Rs
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Cavities for TESLA -RF surface resistance

so R

270 Ohm

?f

f
Q ==

Hz000.000.300.1=of

⇒ Q0 ≈ 1010

Quality factor:
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Bandwidth:
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Line width with 
main coupler
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Surface resistance and mean free path
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Two fluid model, 4.25 K

BCS; Diffuse reflection 4.25K

BCS; Specular reflection 4.25

In the two-fluid model:

Kneisel, Saito

Strong contamination changes the
surface resistance significantly.
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Surface resistance and electric conductivity

σδ
1

=sR

σn Conductivity of normal electrons,
σs Cooperpairs

Normalconductor (Copper):

Superconductor (Niob):

Ω= mRs 4
At 1 GHz:
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sss
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)(

σ

σσ

ns σσ >>

Mean free path λ
Ideal superconductor for RF applicaton
1. Layer: slightly contaminated material,

small surface resistance
2. Layer: very pure metal, 

high thermal conductivity

⇒

Liquid Helium

Niobium (RRR ≈ 500)

Niobium (RRR ≈ 20)
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Residual surface resistance
• Is not fully theoretically understood, but 

depends strongly on:
– Surface contamination

• Gas layers 
• Dust

– Lattice imperfections
– External magnetic field. Remember:
– We have to shield sc cavities from magnetic fields 

to have a low surface resistance!
– Typically:  Rres = 5 nOhm
– Lowest: Rres = 1-2 nOhm
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Surface resistance and accelerating gradient

• One usually measures the Q(Eacc) curve:
– Q0~(1/ Rsurf)
– Quality factor will tell you how much you have

to pay for the cooling power
– Depends on the acclerating gradient e.g. field 

emission
– Helps to understand the loss mechanisms 

especially is supported by temperature 
mapping
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Example for an excitation curve of a TESLA cavitiy

TESLA-500

Specification:
Eacc = 23,4 MV/m @ Q0 = 1•1010 for TESLA-500
Eacc =    35 MV/m @ Q0 = 5•10 9 for TESLA-800
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Temperature mapping system
Temperature mapping
is a very important tool
to understand the loss
mechanisms in 
superconducting 
cavities. 

All loss mechanisms
have  typical 
signatures:

-local heating for local 
defects, multipacting
and field emission

- global heating like in 
the case of high field 
enhanced surface 
resistance
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Temperature mapping system

Example of a 
Temperature mapping:

-the picture shows a 
Mercator projection of a 
single-cell cavity  

-strong localised heating 
spot on the equator 

-another band of heating 
around the equator in the 
high magnetic field (high 
current) region
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Outline of the lecture
• RF cavities
• Superconductivity basics
• RF superconductivity
• Limitations of SRF cavities
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Limitations of SRF cavities 

• Surface and material science
• Defects - Thermal conductivity
• Field emission
• Multipacting
• Increased surface resistance at high field 
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Thermal Conductivity and Defects
• The RF current produces heat
• Superconductors are bad heat 

conductors
– Heat conductivity
– Kapitza Nb/He interface resistance

• A small  normalconducting 
defect can produce a very large 
heating (Factor 106 surface 
resistance!) 

Kapitza resistance

Niobium        Helium II

T(x) ∆T

TB

Ti

Temperature difference between 
inner surface and helium bath 
temperature:

Thermal and Kapitza conductivity
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Thermal Conductivity and Defects
• Defects (e.g. foreign material inclusions) have to be very small 

(Factor 10-6) 
• The thermal conductivity  of niobium has to be high

⇒ Very pure material 
⇒ This means a high RRR (residual resistivity ratio)
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Rule of thumb
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Nb

He

RF

T

x

High RRR

Nb

He

RF

T

x

Low RRR

Stabilising normalconducting defects 

TcTc

Defect Defect

Thermal breakdown = QUENCH!



25.02.02Lutz Lilje DESY

Numerical thermal 
model calculations

D. Reschke
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Numerical thermal models

D. Reschke
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Examples of cavities with material defects

No eddy-current 
scanning was 
applied on the 
niobium sheets 
used in these 
cavities from the 
first production 
series.
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Example of a material defect
Heating on the outside 
surface measured with 
carbon resistors

Defect found with X-ray 
technique: Tantalum
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Eddy current scanning
• Large tantalum inclusions

(~200 µm) and places with 
irregular patterns from 
surface preparation 
(grinding)

Grinding mark
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Thermal conductivity of  Niobium

• Higher thermal 
conductivity 
means:
– better to stabilise 

defects
– higher niobium

quality
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Benefit of the high temperature 
heat treatments
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Thermal Breakdown
• Temperature of part (or all) of surface 

exceeds Tc, dissipating all stored energy.
• Localised effect  ⇒ surface defect has 

higher Rs.
• Quench occurs when surrounding material 

cannot transport the increased thermal 
load to the helium.

• Possible solution: High RRR ⇒ less 
defects or higher purity.
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Imperfect equator welds

Thermometer 
response:

∆T ~ B2 - B8

Temperature mapping of 
the equator region

Heating on the equator
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Imperfect equator welds

Insufficient cleaning of the 
weld area before welding

After improving 
the cleaning 
procedure

By now four manu-
facturers have 
qualified to produce 
reliably high perfor-
ming  cavities.
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Field Emission
• Primary limitation over past 5-10 years
• Emission of e- from cavity surface in presence of 

high surface E-fields
• Emitted e- impacts elsewhere on cavity surface, 

heating the surface and increase Rs

• Limits the achievable Eacc in cavity

• Very clean surface preparation and handling are 
needed

• For a detailed theory see [Padamsee et al 1998]
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Figure from C. Reece, 
9th Workshop on RF 
Superconductivity
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Field Emission

Simulation of electron 
trajectories in a cavity 

Temperature map
of a field emitter

Particle causing 
field emission

Pictures taken from:  H. 
Padamsee,  Supercond. Sci. 
Technol., 14 (2001), R28 –R51
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High pressure ultra-pure water rinsing

Ultra-pure water
(18 MΩ, partice 
filter <0.4 µm) is 
sprayed with
100 bar on the 
niobium 
surface. This 
removes 
particles very 
efficiently.
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High Pressure Water Rinsing
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High Power Conditioning
In some cases applying
high RF power to the 
cavity can cause the 
destruction of field 
emitters and improve the 
cavity performance 

SEM pictures of 
molten particle
after application of 
high RF power 

SEM Pictures taken from:  H. 
Padamsee,  Supercond. Sci. Technol., 
14 (2001), R28 –R51
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Module 4 Cavity
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Module 4 Cavity X-rays
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Multipacting 
• ‘Multiple Impacting‘
• Electrons

– Are omnipresent in cavities (from field emitters for
example)

– Are acclerated in the RF field
– hit the surface
– can free other electrons, depending on the secondary 

electron emission coefficient
• If in resonance (same place, same RF field 

phase), they produce an avalanche. 
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X-ray mapping

Simulated 
electron 
trajectories
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Multipacting in 
superconducting cavities

In a cavity with a nearly 
pill-box-like shape, 
electrons can multiply in 
the region shown.

When the cavity shape is rounded, the 
electrons drift to the zero-field region at the 
equator. Here the electric field is so low that 
the secondary cannot gain enough energy to 
regenerate.

Pictures taken from:  H. Padamsee,  Supercond. 
Sci. Technol., 14 (2001), R28 –R51
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Multipacting: 
Temperature mapping

• Heating moves along 
the equator

• X-ray detectors and 
electron pickups are
also showing activity

• Processing takes a 
few minutes
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Outline (Lecture 2)
– Practical example: TESLA cavities 

• What is TESLA?
– Goals for TESLA cavities

• Choice of superconductor
• Design of SRF cavities
• Manufacturing issues
• Surface preparation
• Current state-of-the-art cavity performance
• Higher gradients for TESLA-800

– Electropolishing
– ‘Superstructure’

• Operating SRF cavities
– Cryostats
– RF Couplers
– Low-level RF control
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Layout of TESLA
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Tesla, the scientist

Main Advantages of TESLA
• SC Cavity => Fill slowly

Drastic Reduction of Peak RF Power
• SC => Low Frequency Affordable => 

Drastically Lower Wake fields
• Flexible beam parameters to 

high luminosity
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Wakefields

a = Iris diameter
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View of the TESLA Tunnel
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TESLA Test Facility Linac
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TESLA Test Facility Linac
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SASE FEL bei TTF - Undulator
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TESLA Cavities



25.02.02Lutz Lilje DESY

Goals for TESLA cavities

Specifications:

Eacc = 23,4 MV/m @ Q0 = 1•1010 for TESLA-500

Eacc =    35 MV/m @ Q0 = 5•10 9 for TESLA-800

Theoretical limit:  Eacc ˜   45-50 MV/m
RF magnetic field exceeds critical field of niobium
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Continuous wave test of TESLA cavity

TESLA-500

Test temperature: 2K
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Outline
• Example: TESLA cavities 

– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800
– Operating SRF cavities
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Gesputterte Niobfilme

Niob auf Niob (Benvenuti et al.) Niob auf Kupfer 
(Benvenuti et al.) 
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Nb3Sn
Universität Wuppertal 
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Magnesiumdiborid: MgB2

Palmieri, INFN
T.H. Johansen et al.

Thin films
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YBCO
Thin films

T.H. Johansen et al.

A. Cassinese et al.
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Specification of the niobium sheet material for 
the TESLA cavities

Tantalum is most important 
substitutional impurity.

Oxygen and hydrogen are the 
most important interstitials.

The niobium grain size
is very important to 
have good forming 
properties .
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Quality control of Nb for cavities

• Eddy current scanning of all sheets
– measures change of electric resistance
– 0.5mm depth, 40 µm defect dia. sensitivity
– rejection rate of sheets about 5 %

• SQUID scanning under development
• Some special investigations on demand

– x-ray radiography (defect visualization)
– x-ray fluorescence (defect element determination)
– neutron activation (Ta distribution)
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Eddy current
scanner for 
Niobium sheets
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Result of eddy current scanning a Nb disc, dia. 265 mm

Global view, rolling marks
and defect areas can be seen

Real and imaginary part
of conductivity at defect,
typical Fe signal
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Principal arrangement 
of SQUID scanning

Nb test sheet with 
.1mm Ta inclusions

Measured response from the back side of the sheet
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Full line is spectrum of Nb next to the defect, 
dotted line is K-line of Ta at the defect region

Analyzing the same defect by synchrotron radiation fluorescence.
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Outline
• Example: TESLA cavities 

– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800
– Operating SRF cavities
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Basis of the TESLA cavities: 
Where did it all start? 

• TESLA cavities are similar in 
the layout to the succesful  
CEBAF cavities, which have 
shown performance above the 
specified 5 MV/m

• Proposals for further 
improvements came from 
several labs:
– Cornell University
– CEA Saclay
– Wuppertal University 
– CERN 
– etc. 
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Figure from C. Reece, 
9th Workshop on RF 
Superconductivity
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TESLA cavity (9-cell)
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Outline
• Example: TESLA cavities 

– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800
– Operating SRF cavities



25.02.02Lutz Lilje DESY

Production and preparation of TESLA cavities  
• Niobium sheets (RRR=300) are subjected to eddy-current scanning to 

avoid foreign material inclusions like tantalum and iron

• Industrial production of full nine-cell cavities:
– Deep-drawing of subunits (half-cells, etc. ) from niobium sheets
– Chemical preparation for welding, cleanroom preparation 
– Electron-beam welding according to detailed specification

• 800 °C high temperature heat treatment to stress anneal the Nb and to 
remove hydrogen from the Nb 

• 1400 °C high temperature heat treatment with titanium getter layer to 
increase the thermal conductivity (RRR=500) 

• Chemical etching to remove damage layer and titanium getter layer
• High pressure water rinsing as final treatment to avoid particle 

contamination
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Standard Cavity Production (EB welding)
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Chemical etching
of the inner surface
(100µm) by closed
pumping circuit.
Acid cooled to 9°C.

Surface 
preparation
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Detailed preparation sequence 
for niobium cavities

• removal of the damage layer by chemical etching
• 2 hours heat treatment at 800 C - remove hydrogen and stress anneal
• 4 hours heat treatment at 1400 C with titanium getter for higher

thermal conductivity to stabilize defects
• removal of the titanium layer by chemical etching
• field flatness tuning
• final 20 µm removal from the inner surface by etching
• high pressure rinsing (HPR) with ultrapure water
• drying by laminar flow in a class 10 cleanroom
• assembly of all flanges, leak-check
• 2 times HPR, drying by laminar flow and assembly
• of the input antenna with high external Q
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Outline
• Example: TESLA cavities 

– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800
– Operating SRF cavities
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Latest production of TESLA-type nine-cell cavities

Test temperature: 2K
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Acceptance test vs. Full systems test

• Acceptance test
• Continuous wave measurement (ca. 5 hours) with

high Q antenna
• Conservative evaluation:

– take the gradient where the Q0 ≥ 1010  

⇒ far below the breakdown field of the cavity

• Full systems test with main power coupler
• pulsed test with:

• 500 µs rise time
• 800 µs flat-top
• 10 Hz repetition rate

• Good agreement between both test methods
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• Several cavities sustain more than 30 MV/m
in pulsed measurement

• Results scatter around Eacc, cw = Eacc, pulse

• Prediction of the cavity behaviour in the
LINAC is possible

Acceptance test

F
u

ll 
sy

st
em

s 
 t

es
t

Test temperature: 2K

Acceptance test vs. full systems test
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Results of cavity productions 

- Improved welding

- Stricter niobium

quality control

<Eacc>for 
Q0 ≥ 1010 

TESLA-500

Module 
performance 
in the TTF 
LINAC

<Eacc>for 
Q0 ≥ 1010 



25.02.02Lutz Lilje DESY

Modules in the TTF LINAC
– Averages of accelerating gradients taken - not 

optimised for single cavity performance
– Predicted gradient from cw measurement 

agrees well with module performance
– Total operation time of sc cavities  is about

8000 hours
– High gradient operation at 20 and 22 MV/m in 

the 2 modules about 700 hours
– Reason: FEL people want lower gradient

– Installed in the LINAC
• no third production cavities  yet -> in 2002
• no third production couplers yet  -> in 2002
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• Example: TESLA cavities 
– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800

• Electropolishing
• Alternative manufacturing techniques
• ‘Superstructure’

– Operating SRF cavities

Outline
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Electropolishing: The way to highest gradients

• Benefits of electrolytic polishing (EP):
– bright and smooth surface
– more than 40 MV/m achieved in several 1.3 GHz 1-cell 

cavities
– suppression of field emission
– 1400°C heat treatment seems to be unnecessary
– works also for very different manufacturing techniques

(see later)
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Niobium surfaces

50 µm 50 µm

BCP EP
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Niobium chemistry
• Oxidation

– Electropolishing:
• 2 Nb + 5 SO4

-- + 5 H2O → Nb2O5 + 10 H+ + 5SO4
-- + 10 e-

– Chemical etching:
• 2 Nb + 5 NO3

- → Nb2O5 + 5 NO2 
-

– Anodizing:
• 2 Nb + 5 OH- → Nb2O5 + 5 H+ + 10 e-

• Complex forming
• Nb2O5 + 6 HF               → H2NbOF5 + NbO2•0.5 H2O + 1.5 H20
• NbO2•0.5 H2O + 4 HF  → H2NbF5 + 1.5 H2O
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KEK results for electropolished niobium cavities
K. Saito et al. KEK   1998/1999

Test temperature: 1,6 KOne-cell cavities
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Q
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TESLA 500 TESLA 800

Electropolished cavities 
EP at CERN, Measurements at CERN,CEA and DESY 2001

Test temperature: 2K

Test temperature: 1,6 K

One-cell cavities
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Electropolished TESLA nine-cell cavity
EP at Nomura Plating and KEK, Test at DESY

Test temperature: 2K
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In-situ Baking

• Heating of the cavity to  100 - 120 °C
• Duration: ca. 40 hours
• Pressure below 10-6 mbar
• Inert gas atmosphere on the outside
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Improvement by ‘In-situ’ baking

1,00E+08

1,00E+09

1,00E+10

1,00E+11

0 5 10 15 20 25 30 35 40
Eacc [MV/m]

Q
0

Electropolishing

+ after 120 °C in-situ baking

Strong degradation of the quality 
factor - No field emission!

Power limit of the 
amplifier

Thermal breakdown
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Temperature mapping at  
33MV/m

... before in-situ bakeout at 120°C

⇒ Large area in the high magnetic 
field region of the cavity heats up 

⇒ Global effect

... after in-situ bakeout at 120°C

⇒ Heating of the equator welding 

⇒ Change of the surface properties
of the niobium
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Q(Eacc) before bake
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Q(Eacc) after bake
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Air exposure of a baked niobium surface 
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Residual gas analysis during bakeout

• It is mostly water and 
hydrogenf

• Bake-out effect stays even
after a new exposure to air 
and high pressure water
rinsing, therefore it is 
unlikely that adsorbed 
gasses play a role.
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Thickness of the surface layer 
affected by the bake effect
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What is the reason for the baking effect?

– Evaporation of chemical residues from the surface ? 
– Impurity diffusion in the surface layer ?

– Hydrogen 
– Oxygen

– A closer look on the surface properties of niobium is 
necessary:

– Do surface barriers play a role?
– Are the pinning properties changed by the bakeout?
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Changes in surface oxides ?
C. Antoine CEABefore bakeout

After bakeout
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• Example: TESLA cavities 
– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800

• Electropolishing
• Alternative manufacturing techniques
• ‘Superstructure’

– Operating SRF cavities

Outline
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Spun and EP 
cavities

Palmieri (INFN-LNL), 
CERN-CEA-DESY 

Collaboration

One-cell cavity
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Seamless 
Nb tube

Tube after 
reduction of 

the ends
Single cell 

cavity

Two stages of cavity forming

Hydroforming

W. Singer DESY
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Hydroforming 
and EP
Kneisel TJANF

Kaiser, Singer DESY
Saito KEK lll
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hydro forming

One-cell cavity

Test temperature: 2K
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Hydroformed niobium 2-cell cavity

W. Singer et al. DESY
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Hydroforming of Nb-Cu cells

W. Singer et al. DESY
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Hydroformed Nb-Cu one-cell cavities

W. Singer et al. DESY
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• Example: TESLA cavities 
– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800

• Electropolishing
• Alternative manufacturing techniques
• ‘Superstructure’

– Operating SRF cavities

Outline
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Benefits:

- 6% larger active accelerating  
length as compared to normal 
nine-cell design

- less main and HOM couplers

TESLA 2 x 9 Superstructure
J. Sekutowicz, M. Liepe et al.

Field profile:
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Comparison of two accelerating schemes 
for TESLA-500 (nine-cell vs. superstructure)

Layout Lactive

[m]

Eacc

[MV/m]

No. of
power
coupler

No. of
HOM
coupler

No. of
freq.
tuners

Filling
factor
Lactive/Ltotal

Ptrans

[kW]

9-cell 1.04 23.4 20592 41184 20592 78.6 232

2x9-
cell

2.08 22 10926 32778 21852 84.8 437
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Superstructure
J. Sekutowicz, M. Liepe et al.

- higher fill factor Lacc / Ltotal

- less RF couplers
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• Example: TESLA cavities 
– What is TESLA?
– Choice of superconductor
– Design of SRF cavities
– Manufacturing issues
– Surface preparation
– Current state-of-the-art cavity performance
– Higher gradients for TESLA-800
– Operating SRF cavities

Outline
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Operating SRF cavities

• Cryostats
• RF Couplers
• Piezoelectric tuner
• Low-level RF control
• Real world example (if the internet does work…)
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Cryogenic system
• 2 K operation
• Liquid superfluid 

Helium
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Accelerator Module for TESLA

Length 
increases
to ~17 m
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Operating SRF cavities

• Cryostats
• RF Couplers
• Piezoelectric tuner
• Low-level RF control
• Real world example (if the internet does work…)
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Specification of the TESLA High Power Coupler

fix point
(1.5 mm 
longitudinal)

fix point
(1.5 mm 
longitudinal)

flexible
(15 mm 
longitudinal)

cavity position
during cool down

fix
( 2.5*106 )

fix
( 3*106 )

adjustable
( 106 - 107 )

coupling

5 Hz5 Hz10 Hzrepetition rate

555 kW / 1110 
kW250 kW / 500 kW250 kW

beam power + 
control margin 
(27%)

TESLA 
superstructure / 
upgrade

TESLA
9-cell / upgrade

TTF
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6 W70 K heat load

sufficient for safe operation and 
monitoringdiagnostic

0.5 W4 K heat load

0.06 W2 K heat load

1 MW at reduced pulse length
( 500 µsec and repetition rate 1 Hz )

power for High Power Processing in 
situ

pulsed: 500 µsec risetime,
800 µsec flat top with beam

operation

1.3 GHzfrequency

General Parameters
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Requirements of Couplers for SC Cavities

- strong mismatch in absence of beam between cavity and generator
-> full reflection

- cold warm transition, low heat loads
- it has to be cleaned to the standard of the sc cavity surfaces

(usually by dustfree water)
- clean assembly of coupler to the cavity in the class 10 clean room
- protection of the clean cavity surface during assembly to the 

cryostat
- safety against window failures during operation
- diagnostic
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TESLA Coupler TTF 3
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Teststand

- traveling wave
- room temperature



25.02.02Lutz Lilje DESY

Duration of Processing
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Temperature Profile at Room Temp.
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Coupler Operation in the TTF Linac

- we have produced 60 couplers of different designs for TTF

- all are tested

- 24 couplers are operated in the TTF-FEL up to now for more than 10000 h

- most of the time at about 100 kW (in favor of SASE experiments)

- up to 400 kW during processing of couplers and cavities

- going to higher power levels above 180 kW without additional conditioning  
high e- signals were seen at the end of the pulse

- by changing the pulse shape on the end the activity could be suppressed
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Operating SRF cavities

• Cryostats
• RF Couplers
• Pulsed operation

– Low-level RF control
– Piezoelectric tuner

• Real world example (if the internet does work…)
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RF control system
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Beam induced 
transients –

Low level RF 
control
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Microphonics
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Frequency detuning 
during RF pulse

Frequency detuning due
Lorentz forces of the 
electromagnetic field in 
the cavites:

? f = K • Eacc
2

K ˜  1 Hz / (MV/m)2

Remember:

Cavity bandwidth with 
main coupler is ˜  300 Hz

Beam on
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Piezoelectric tuner
M. Liepe, S. Simrock, W.D.-Moeller

Piezo

He-Tank

& Cavity

Tuning mechanism

Piezo-Actuator:

l=39mm

Umax=150V

∆ l=3µm at 2K

∆fmax,static=500Hz
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Frequency stabilisation during RF pulse 
using a piezoelectric tuner

M. Liepe, S. Simrock, W.D.-Moeller

Beam on

Frequency detuning 
of 200 - 250 Hz
compensated!
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Thanks for your attention!


