Superconducting RF

University of Chicago Physics 575 Accelerator Physics and Technology of Linear Colliders

Chapter 7

Lutz.Lilje@desy.de DESY -MPY-

Before we start...

- a big thank you to Peter Schmüser for helping me to prepare the lecture.
- another thank you to the colleagues from the TESLA collaboration and the field from superconducting RF cavities for the material provided
- ... please check out the lecture notes for references. I tried to give a lot of primary and secondary literature
 - A good introduction into superconducting cavities is given in [Padamsee et al. 1998].
 - Short review articles are also available [Aune et al. 2000, Padamsee 2001].
- Iet me inform you that this is a first-timer for me giving this type of lecture: Please comment on the stuff you didn't like – and on the things, which you like.

Outline of the lectures

- Theory first ... (Lecture 1)
 - RF cavities (revisited see also Juwen Wang)
 - A variety of SRF cavities in pictures
 - The Pillbox cavity
 - Acceleration of a bunched beam
 - Superconductivity basics
 - RF superconductivity
 - Limitations of superconducting RF (SRF) cavities
 - Diagnostic tools
 - Surface and material science
 - Defects
 - Thermal conductivity
 - Field emission
 - Multipacting
 - Increased surface resistance at high field

Outline (continued)

- Practical example: TESLA cavities (Lecture 2)
 - What is TESLA?
 - Goals for TESLA cavities
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Electropolishing
 - 'Superstructure'
 - Operating SRF cavities
 - Cryostats
 - RF Couplers
 - Low-level RF control

SRF cavities

- What do they actually look like?
 - Protons
 - Ions
 - Electrons
- Courtesy H. Padamsee

High luminosity rings (CESR)

Niobium bulk cavities

CERN 350 MHz

Lutz Lilje DESY

Outline of the lecture

- RF cavities
 - A variety of SRF cavities in pictures
 - The Pillbox cavity
 - Acceleration of a bunched beam
- Superconductivity basics
- RF superconductivity
- Limitations of superconducting RF (SRF) cavities

Properties of Cavities

Example: cylindrically symetric cavity - Pillbox

$$\begin{aligned} \frac{\partial^2 E_s}{\partial r^2} + \frac{1}{r} \frac{\partial E_s}{\partial r} &= \frac{1}{c^2} \frac{\partial^2 E_s}{\partial t^2} \\ E_s(r,t) &= E(r) e^{i\omega t} \middle| \quad \text{with} \quad u = \frac{\omega}{c} r \\ E(u) &= E_0 J_0(u) \qquad J_0, J_1 \text{ Besselfunctions} \end{aligned}$$

Frequency:
$$E\left(r=\frac{D}{2}\right)=0$$
 $f=\frac{c\cdot 2.405}{\pi D}$

Stored Energy:

$$U = \frac{1}{2} \varepsilon_0 E_0^2 J_1^2 (2.405) l \pi \left(\frac{D}{2}\right)^2$$
Dissipated power:

$$P_{\text{Ges}} = \frac{1}{2} R_{\text{S}} \cdot \frac{\varepsilon_0}{\mu_0} \cdot E_0^2 \cdot \pi D l \cdot \left(1 + \frac{D}{2l}\right) J_1^2 (2.405)$$
Quality factor:

$$Q_0 = \omega \cdot \frac{U}{P_{\text{Ges}}} = \frac{\mu_0 c \cdot 2.405}{2 R_{\text{S}} \left(1 + \frac{D}{2l}\right)} \qquad \text{Geometry factor:} \quad G = \frac{\mu_0 c \cdot 2.405}{2 + D/l}$$
Lutz Lilje DESY

Einkoppel-Schleife

ቲ

Strahl

8

Ū

2

 $J_1(u)$

Ø=D

0.5 -

 $J_0(u)$

Field distributions in cavities

Relations for the surface fields to acclerating gradient:

 $E_{peak}/E_{acc} = 1,98$ minimize this to reduce field emission $B_{peak}/E_{acc} = 4,17 \text{ [mT]/[MV/m]}$ minimize because of maximum critical field of the superconductor

Lutz Lilje DESY

Equivalent circuit of generator-cavity-beam system

- Cavity is a resonance circuit
- R is called the shunt impedance, this is NOT R_{surf} !
- Coupler is like a transformer (1:N, N>>1)

Lutz Lilje DESY

Equivalent circuit formulas

Cavity quality factor:

Coupler (external) quality factor:

$$Q_0 = \frac{R_0}{\omega_0 L}$$
 with $\omega_0 = 1/\sqrt{LC}$ $Q_{ext} = \frac{R_{ext}}{\omega_0 L}$

Loaded quality factor:

$$Q_{load} = \frac{R_{load}}{\omega_0 L}, \quad \frac{1}{Q_{load}} = \frac{1}{Q_0} + \frac{1}{Q_{ext}}$$

Decay time :

Coupling factor :

$$\beta_c = \frac{|Q_0|}{Q_{ext}}$$

Lutz Lilje DESY

 $\frac{2Q_{load}}{\omega_0}$

Acceleration of a bunched beam (see MathCAD example)

Outline of the lecture

- RF cavities
- Superconductivity basics
- RF superconductivity
- Limitations of superconducting RF (SRF) cavities

Superconductors in magnetic fields (Type I) 1,2 $G_n - G_s = \frac{1}{2\mu_0} B_c^2$ Normal conductor 0,8 **എ**0,6 Superconductor 0.4 Temperature dependence: Meissner phase 0,2 $B_c(T) = B_c(0) \left| 1 - \left(\frac{T}{T_c}\right)^2 \right|$ 0 0 0.2 0,5 0.6 0.7 0.8 0.9 0.1 0.3 0.4 T/T_c Penetration depth: **External** Cooper pair density n_{sc} $B(x) = B(0)e^{-\frac{x}{\lambda_L}} \quad \lambda_L = \sqrt{\frac{m}{\mu_0 n_s c^2}}$ magnetic field n, Magnetfeld B B $\lambda_L(T) = \lambda(0) \left(1 - \left(\frac{T}{T_c}\right)^4 \right)^{-\frac{1}{2}}$ **Boundary Superconductor** of the SC (SC) Coherence length: $\xi_0 = \frac{\hbar v_F}{-}$ λ_L ξ_{GL} X-direction 0 Lutz Lilje DESY 25.02.02

Superconductors in magnetic fields (Typ II)

Lutz Lilje DESY

Flux penetration into a superconductor

Electron holography is used to make magnetic fluxons visible (Tonomura et al.)

Fig. 6. Interference micrographs of magnetic lines of force penetrating superconducting Ph films: (a) film thickness O-2 µcm; (b) film thickness 1-O µm.

Fluxons stick to defects !

This is good for magnets, but bad for cavities (check homework).

$$R_{fl} = \eta \frac{B_{ext}}{B_{c2}} R_{surf,nc}$$

Fig. 16. Vortex configuration near black defects (T = 7.5 K, H = 75 gauss).

Lutz Lilje DESY

Critical magnetic field for the RF case

- RF field at 1,3 GHz is on for less than 10⁻⁹ s
- If there are no nucleation centers (surface defects...) the penetration of the magnetic field can be delayed. Superheating!

Superheating fields:

Niobium properties:

$B_{eh} = 0.75 B_c$	for	$\kappa \gg 1$	Critical temperature T_c	$9.2~\mathrm{K}$
$B_{\star} = 1.9R$	for	$r \sim 1$	Coherence length ξ_0	39 nm
$D_{sh} - 1.2D_c$	101	$\kappa \sim 1$	London penetration depth λ_L	30 nm
$B_{sh} = \frac{1}{\sqrt{\kappa}} B_c$	for	$\kappa \ll 1$	GL parameter κ	0.8

Theoretical accelerating field limits

8		Experimental data [mT]	Calculated field [mT]		$E_{acc} [\mathrm{MV/m}]$	
	Property	at $4.2 \mathrm{K}$	at $0 \mathrm{K}$	at $2 \mathrm{K}$	at $2 \mathrm{K}$	
0	B_{c1}	130	164	156	37	What is really
	\mathbf{B}_{c}	158	200	190	45	the fundamental
	B_{sh}	190	240	230	54	limit for RF
	B_{c2}	248	312	297	62	cavities?

Lutz Lilje DESY

Outline of the lecture

- RF cavities
- Superconductivity basics
- RF superconductivity
- Limitations of superconducting RF (SRF) cavities

RF superconductivity

The superconducting Cooper pairs have inertia. Therefore the unpaired normalconducting 'feel' also a part of the electromagnetic RF (ac) fields.

Superconductors have for temperatures T>0 K a surface resistance!

Electric conductivity and Surface resistance

Normalconducting electrons:

 $n \propto \exp(-E_g/k_B T)$

$$j_n = \sigma_n E_0 exp(-i\omega t)$$

Superconducting electrons:

 $m_c \dot{v_c} = -2eE_0 exp(-i\omega t) \quad \Rightarrow \quad j_c = i\frac{n_c 4e^2}{m_c \omega}E_0 exp(-i\omega t)$

Combine both nc and sc electrons:

Ohm's Law:
$$j = j_n + j_c = \sigma E_0 exp(-i\omega t)$$

Electric conductivity: $\sigma = \sigma_n + i\sigma_c \quad \text{with} \quad \sigma_c = \frac{n_c 4e^2}{m_c \omega}$ Lutz Lilje DESY

Electric conductivity and Surface resistance

 $\begin{array}{ll} \text{Surface resistance} & R_{surf} = Re\left(\frac{1}{\sigma\lambda_L}\right) = \frac{1}{\lambda_L} \cdot \frac{\sigma_n}{\sigma_r^2 + \sigma_r^2} \\ \text{(analogous to skin depth):} \end{array}$

Surface resistance for superconductors in BCS theory:

superconductors in BCS
theory:
$$R_{\rm BCS} = \frac{C}{T} f^2 \sigma_n \Lambda^3 \exp(-1.76 T_c/T)$$

Effective penetration depth: $\Lambda = \lambda_L \sqrt{1 + \xi_0/\ell}$

- strongly on the temperature, we need 2 K
- quadratically on frequency: Limit for 3 GHz would be 30 MV/m.
- on the mean free path, what purity do we need?

Cavities for TESLA -RF surface resistance

'Natural' Bandwidth: ?f[~] 0,1 Hz ▶ Q₀ » 10¹⁰ RF surface resistance:

Surface resistance and mean free path

In the two-fluid model:

$$R_{BCS}(\ell) \propto \left(1 + \frac{\xi_0}{\ell}\right)^{\frac{3}{2}} \cdot \ell$$

Surface resistance and electric conductivity Normalconductor (Copper): $R_s = \frac{1}{sd}$ At 1 GHz: $\begin{cases} s = 1 mm \\ R_s = 4 m\Omega \end{cases}$

Superconductor (Niob):

 $R_{\rm c} = \operatorname{Re}(Z_{\rm c}) \propto \mathbf{S}_{\rm 1}$

$$j = j_n + j_s = (\mathbf{s}_n - i\mathbf{s}_s)E$$
$$Z_s = R_s + iX_s$$

 σ_n Conductivity of normal electrons, σ_s Cooperpairs

$$\boldsymbol{S}_{s} >> \boldsymbol{S}_{n}$$

Residual surface resistance

- Is not fully theoretically understood, but depends strongly on:
 - Surface contamination
 - Gas layers
 - Dust
 - Lattice imperfections
 - External magnetic field. Remember:

$$R_{fl} = \eta \frac{B_{ext}}{B_{c2}} R_{surf,nc}$$

- We have to shield sc cavities from magnetic fields to have a low surface resistance!
- Typically: $R_{res} = 5 \text{ nOhm}$
- Lowest: R_{res} = 1-2 nOhm

Surface resistance and accelerating gradient

- One usually measures the $Q(E_{acc})$ curve:
 - $-Q_0 \sim (1/R_{surf})$
 - Quality factor will tell you how much you have to pay for the cooling power
 - Depends on the acclerating gradient e.g. field emission
 - Helps to understand the loss mechanisms especially is supported by temperature mapping

Surface resistance and accelerating gradient

Temperature mapping system

Temperature mapping is a very important tool to understand the loss mechanisms in superconducting cavities.

All loss mechanisms have typical signatures:

-local heating for local defects, multipacting and field emission

- global heating like in the case of high field enhanced surface resistance Lutz Lilje DESY

Temperature mapping system

Example of a Temperature mapping:

-the picture shows a Mercator projection of a single-cell cavity

-strong localised heating spot on the equator

-another band of heating around the equator in the high magnetic field (high current) region

Outline of the lecture

- RF cavities
- Superconductivity basics
- RF superconductivity
- Limitations of SRF cavities

Limitations of SRF cavities

- Surface and material science
- Defects Thermal conductivity
- Field emission
- Multipacting
- Increased surface resistance at high field

Thermal Conductivity and Defects

• The RF current produces heat

- Superconductors are bad heat conductors
 - Heat conductivity
 - Kapitza Nb/He interface resistance
- A small normalconducting defect can produce a very large heating (Factor 10⁶ surface resistance!)

Temperature difference between inner surface and helium bath temperature:

Thermal and Kapitza conductivity

25.02.02

Lutz Lilje DESY

Thermal Conductivity and Defects

- Defects (e.g. foreign material inclusions) have to be very small (Factor 10⁻⁶)
- The thermal conductivity of niobium has to be high
 - \Rightarrow Very pure material
 - \Rightarrow This means a high RRR (residual resistivity ratio)

Stabilising normalconducting defects

Thermal breakdown = QUENCH!

Lutz Lilje DESY

Numerical thermal models

Examples of cavities with material defects

Example of a material defect

Eddy current scanning

 Large tantalum inclusions (~200 µm) and places with irregular patterns from surface preparation (grinding)
Grinding mark

Lutz Lilje DESY

Thermal conductivity of Niobium

Thermal Breakdown

- Temperature of part (or all) of surface exceeds T_c, dissipating all stored energy.
- Localised effect \Rightarrow surface defect has higher R_s .
- Quench occurs when surrounding material cannot transport the increased thermal load to the helium.
- Possible solution: High RRR \Rightarrow less defects or higher purity.

Imperfect equator welds

Imperfect equator welds

Field Emission

- Primary limitation over past 5-10 years
- Emission of e⁻ from cavity surface in presence of high surface E-fields
- Emitted e⁻ impacts elsewhere on cavity surface, heating the surface and increase R_s
- Limits the achievable E_{acc} in cavity
- Very clean surface preparation and handling are needed
- For a detailed theory see [Padamsee et al 1998]

Distribution of Maximum Operational SRF Cavity Gradients in CEBAF by Type of Limitation

Field Emission

Pictures taken from: H. Padamsee, Supercond. Sci. Technol., 14 (2001), R28 – R51

Particle causing field emission

Temperature map of a field emitter

Simulation of electron trajectories in a cavity

Lutz Lilje DESY

High pressure ultra-pure water rinsing

Ultra-pure water (18 M Ω , partice filter <0.4 μ m) is sprayed with 100 bar on the niobium surface. This removes particles very efficiently.

Lutz Lilje DESY

High Pressure Water Rinsing

Lutz Lilje DESY

High Power Conditioning

Multipacting

- 'Multiple Impacting'
- Electrons
 - Are omnipresent in cavities (from field emitters for example)
 - Are acclerated in the RF field
 - hit the surface
 - can free other electrons, depending on the secondary electron emission coefficient
- If in resonance (same place, same RF field phase), they produce an avalanche.

S-Band TM010 Resonator Stanford, late 1960-ies

this is the standard geometry for about 15 years; unfortunately the cylindrical geometry is favourable for electron multipacting

I.Ben-Zvi, J.F. Crawford and J.P. Turneaure Eletron Multipacting in cavities 1973 PAC Conf., p.54 (1973).

X-ray mapping

Simulated electron trajectories

25.02.02

Lutz Lilje DESY

Multipacting in superconducting cavities

In a cavity with a nearly pill-box-like shape, electrons can multiply in the region shown.

When the cavity shape is rounded, the electrons drift to the zero-field region at the equator. Here the electric field is so low that the secondary cannot gain enough energy to regenerate.

Pictures taken from: H. Padamsee, Supercond. Sci. Technol., 14 (2001), R28 – R51 25.02.02

 Processing takes a few minutes

Outline (Lecture 2)

- Practical example: TESLA cavities
 - What is TESLA?
 - Goals for TESLA cavities
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Electropolishing
 - 'Superstructure'
 - Operating SRF cavities
 - Cryostats
 - RF Couplers
 - Low-level RF control

Image: Non-Aligned stateTesla, the scientist

Held at Cornell University July 23-26, 1990

Main Advantages of TESLA

• SC Cavity => Fill slowly

Drastic Reduction of Peak RF Power

- SC => Low Frequency Affordable =>
 - **Drastically Lower Wake fields**
- Flexible beam parameters to high luminosity

Wakefields

$$W_{z} \sim a^{-2} \sim \omega^{2}$$
$$W_{\perp} \sim a^{-3} \sim \omega^{3}$$

a = Iris diameter

Lutz Lilje DESY

View of the TESLA Tunnel

TESLA Test Facility Linac

Lutz Lilje DESY

TESLA Test Facility Linac

Lutz Lilje DESY

SASE FEL bei TTF - Undulator

Lutz Lilje DESY

TESLA Cavities

Lutz Lilje DESY

Goals for TESLA cavities

Specifications:

 $E_{acc} = 23,4 \text{ MV/m} @ Q_0 = 1 \cdot 10^{10} \text{ for TESLA-500}$

 $E_{acc} = 35 \text{ MV/m} @ Q_0 = 5 \cdot 10^9 \text{ for TESLA-800}$

Theoretical limit: $E_{acc} \sim 45-50 \text{ MV/m}$ RF magnetic field exceeds critical field of niobium

Outline

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Operating SRF cavities

Nb₃Sn

Universität Wuppertal

Fig. 1: SEM pictures of three Nb₃Sn films: $d_{film} = 0.6\mu m$ (left), 1.2 μm (middle), 2.1 μm (right).

Lutz Lilje DESY

Magnesiumdiborid: MgB₂

Thin films

Fig. 1 (top) and Fig. 2 (bottom)

Specification of the niobium sheet material for the TESLA cavities

Impurity content in ppm (wt)					Tantalum is most important		
Ta	≤ 500	Η	≤ 2		substitutional impurity.		
W	≤ 70	Ν	$ \leq 10 \\ \leq 10 $		Oxygen and hydrogen are the most important interstitials.		
Ti	≤ 50	Ο					
Fe	≤ 30	\mathbf{C}	\leq	10			
Mo	≤ 50			Mechanical Properties			
Ni	≤ 30			Residual	resistivity ratio RRR	≥ 300	
The niobium grain size is very important to have good forming properties				grain size		$\approx 50 \ \mu { m m}$	
				yield strength		> 50 MPa	
				tensile strength		> 100 MPa	
				elongation at break		30~%	
				Vickers hardness HV 10		≤ 50	

Quality control of Nb for cavities

- Eddy current scanning of all sheets
 - measures change of electric resistance
 - 0.5mm depth, 40 µm defect dia. sensitivity
 - rejection rate of sheets about 5 %
- **SQUID scanning** under development
- Some **special investigations** on demand
 - x-ray radiography (defect visualization)
 - x-ray fluorescence (defect element determination)
 - neutron activation (Ta distribution)

Eddy current scanner for Niobium sheets

Result of eddy current scanning a Nb disc, dia. 265 mm

Principal arrangement of SQUID scanning

Measured response from the back side of the sheet

Nb test sheet with .1mm Ta inclusions

Lutz Lilje DESY

60 pT

Two-dimensional distribution of eddy-current field above the niobium test sample, measured from the back side of the sample. The excitation coil had 30 turns and a diamter of 3 mm; the excitation frequency was 10 kHz. The reference phase of the lock-in amplifier was chosen such that the lift-off effect was minimized.

Analyzing the same defect by synchrotron radiation fluorescence.

Full line is spectrum of Nb next to the defect, dotted line is K-line of Ta at the defect region

Outline

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Operating SRF cavities

Basis of the TESLA cavities: Where did it all start?

- TESLA cavities are similar in the layout to the succesful CEBAF cavities, which have shown performance above the specified 5 MV/m
- Proposals for further improvements came from several labs:
 - Cornell University
 - CEA Saclay
 - Wuppertal University
 - CERN
 - etc.

CEBAF Cavity Pair Assembly

CEBAF (Jefferson LAB)

- from C.E. Reece, Operating Experience With Superconducting Cavities at Jefferson Lab, 8th RF Superconductivity Workshop, Padua, Italy, to be published.
 - is in full operation
 - is delivering beam at 4.4 GeV / 115 μA
 - is using 330 s.c. cavities operated at 1497 MHz / 2 K
 - has grouped the cavities in pairs (2 cavities) and units (4 pairs)
 - operates each cavity with its own 5 kW klystron
 - reaches an average usable gradient of 7.5 MV/m an accelerating gradient spread of 5 MV/m FWHM an average quench limit of 13 MV/m !!!
 - has a stable and reliable cavity operation
 - could support higher energies (5.6 GeV)
 - is going to increase the usable gradient by in-situ He processing
 - is developing an upgrade (J.R. Delayen, this conference)

Distribution of Maximum Operational SRF Cavity Gradients in CEBAF by Type of Limitation

TESLA cavity (9-cell)

type of accelerating structure accelerating mode fundamental frequency design gradient Eace (TTF) design gradient Eace (TESLA) unloaded quality factor Q_0 (TTF) unloaded quality factor Q_0 (TESLA) shunt impedance R / Q E peak / Eace B peak / Eace cavity bandwidth at $Q_0 = 3 \times 10^6$

standing wave TM0 π mode 1300 MHz 15 MV/m 25 MV/m > 3 × 10⁹ > 5 × 10⁹ 1036 Ω 2.0 4.26 mT / (MV/m) 430 Hz

Lutz Lilje DESY

25.02.02

HWHE COOPT

Outline

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Operating SRF cavities

Production and preparation of TESLA cavities

- Niobium sheets (RRR=300) are subjected to eddy-current scanning to avoid foreign material inclusions like tantalum and iron
- Industrial production of full nine-cell cavities:
 - Deep-drawing of subunits (half-cells, etc.) from niobium sheets
 - Chemical preparation for welding, cleanroom preparation
 - Electron-beam welding according to detailed specification
- 800 °C high temperature heat treatment to stress anneal the Nb and to remove hydrogen from the Nb
- 1400 °C high temperature heat treatment with titanium getter layer to increase the thermal conductivity (RRR=500)
- Chemical etching to remove damage layer and titanium getter layer
- High pressure water rinsing as final treatment to avoid particle contamination

Lutz Lilje DESY

Standard Cavity Production (EB welding)

Lutz Lilje DESY

Surface preparation

Chemical etching of the inner surface (100µm) by closed pumping circuit. Acid cooled to 9°C.

Detailed preparation sequence for niobium cavities

- removal of the damage layer by chemical etching
- 2 hours heat treatment at 800 C remove hydrogen and stress anneal
- 4 hours heat treatment at 1400 C with titanium getter for higher thermal conductivity to stabilize defects
- removal of the titanium layer by chemical etching
- field flatness tuning
- final 20 µm removal from the inner surface by etching
- high pressure rinsing (HPR) with ultrapure water
- drying by laminar flow in a class 10 cleanroom
- assembly of all flanges, leak-check
- 2 times HPR, drying by laminar flow and assembly
- of the input antenna with high external Q

Outline

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Operating SRF cavities

Acceptance test vs. Full systems test

- Acceptance test
 - Continuous wave measurement (ca. 5 hours) with high Q antenna
 - Conservative evaluation:
 - take the gradient where the Q₀ ³ 10¹⁰
 - \Rightarrow far below the breakdown field of the cavity

• Full systems test with main power coupler

- pulsed test with:
 - 500 µs rise time
 - 800 µs flat-top
 - 10 Hz repetition rate

Good agreement between both test methods

Acceptance test vs. full systems test

Lutz Lilje DESY

Results of cavity productions

Modules in the TTF LINAC

- Averages of accelerating gradients taken not optimised for single cavity performance
- Predicted gradient from cw measurement agrees well with module performance
- Total operation time of sc cavities is about 8000 hours
- High gradient operation at 20 and 22 MV/m in the 2 modules about 700 hours
 - Reason: FEL people want lower gradient
- Installed in the LINAC
 - no third production cavities yet -> in 2002
 - no third production couplers yet -> in 2002

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Electropolishing
 - Alternative manufacturing techniques
 - 'Superstructure'
 - Operating SRF cavities

Electropolishing: The way to highest gradients

- Benefits of electrolytic polishing (EP):
 - bright and smooth surface
 - more than 40 MV/m achieved in several 1.3 GHz 1-cell cavities
 - suppression of field emission
 - 1400°C heat treatment seems to be unnecessary
 - works also for very different manufacturing techniques (see later)

Electropolishing of 1-cell cavities (Scheme)

Niobium surfaces

Lutz Lilje DESY

Niobium chemistry

- Oxidation
 - Electropolishing:
 - 2 Nb + 5 SO₄⁻⁻ + 5 H₂O \rightarrow Nb₂O₅ + 10 H⁺ + 5SO₄⁻⁻ + 10 e⁻
 - Chemical etching:
 - 2 Nb + 5 NO₃⁻ \rightarrow Nb₂O₅ + 5 NO₂⁻
 - Anodizing:
 - 2 Nb + 5 OH⁻ \rightarrow Nb₂O₅ + 5 H⁺ + 10 e⁻
- Complex forming
 - $Nb_2O_5 + 6 HF \rightarrow H_2NbOF_5 + NbO_2 = 0.5 H_2O + 1.5 H_2O$
 - NbO₂•0.5 H₂O + 4 HF \rightarrow H₂NbF₅ + 1.5 H₂O

KEK results for electropolished niobium cavities

K. Saito et al. KEK 1998/1999

Electropolished cavities

In-situ Baking

- Heating of the cavity to 100 120 °C
- Duration: ca. 40 hours
- Pressure below 10⁻⁶ mbar
- Inert gas atmosphere on the outside

Improvement by 'In-situ' baking

Q(E_{acc}) after bake

Air exposure of a baked niobium surface

Residual gas analysis during bakeout

- It is mostly water and hydrogenf
- Bake-out effect stays even after a new exposure to air and high pressure water rinsing, therefore it is unlikely that adsorbed gasses play a role.

Thickness of the surface layer affected by the bake effect

What is the reason for the baking effect?

- Evaporation of chemical residues from the surface ?
- Impurity diffusion in the surface layer ?
 - Hydrogen
 - Oxygen
- A closer look on the surface properties of niobium is necessary:
 - Do surface barriers play a role?
 - Are the pinning properties changed by the bakeout?

Change of the oxide structure ?

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Electropolishing
 - Alternative manufacturing techniques
 - 'Superstructure'
 - Operating SRF cavities

Hydroforming

25.02.02

Lutz Lilje DESY

Hydroformed niobium 2-cell cavity

Hydroforming of Nb-Cu cells

Hydroformed Nb-Cu one-cell cavities

Lutz Lilje DESY

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Electropolishing
 - Alternative manufacturing techniques
 - 'Superstructure'
 - Operating SRF cavities

TESLA 2 x 9 Superstructure

J. Sekutowicz, M. Liepe et al.

Field profile:

Benefits:

- 6% larger active accelerating length as compared to normal nine-cell design
- less main and HOM couplers

Comparison of two accelerating schemes for TESLA-500 (nine-cell vs. superstructure)

Layout	L _{active} [m]	E _{acc} [MV/m]	No. of power coupler	No. of HOM coupler	No. of freq. tuners	Filling factor L _{active} /L _{total}	P _{trans} [kW]
9-cell	1.04	23.4	20592	41184	20592	78.6	232
2x9- cell	2.08	22	10926	32778	21852	84.8	437

Superstructure

- J. Sekutowicz, M. Liepe et al.
- higher fill factor $\rm L_{acc}$ / $\rm L_{total}$
- less RF couplers

Table 1: Parameters of Cu model of the superstructure

Parameter	
number of cells, M x N	4 x 7
number of HOM / input couplers	5 / 1
radius of mid / end iris [mm]	35 / 57
fill factor	0.875
k _{cc} , cell-to-cell coupling	0.019
k _{ss} , cavity-to-cavity coupling	3.6.10-4
field instability factor, N^2/k_{cc} [10 ³]	2.6
$(R/Q)/length$ [Ω/m]	906
Q ₀	≈ 27000

Outline

- Example: TESLA cavities
 - What is TESLA?
 - Choice of superconductor
 - Design of SRF cavities
 - Manufacturing issues
 - Surface preparation
 - Current state-of-the-art cavity performance
 - Higher gradients for TESLA-800
 - Operating SRF cavities

Operating SRF cavities

- Cryostats
- RF Couplers
- Piezoelectric tuner
- Low-level RF control
- Real world example (if the internet does work...)

Accelerator Module for TESLA

Operating SRF cavities

- Cryostats
- RF Couplers
- Piezoelectric tuner
- Low-level RF control
- Real world example (if the internet does work...)

Specification of the TESLA High Power Coupler

	TTF	TESLA 9-cell / upgrade	TESLA superstructure / upgrade
beam power + control margin (27%)	250 kW	250 kW / 500 kW	555 kW / 1110 kW
repetition rate	10 Hz	5 Hz	5 Hz
coupling	adjustable (10 ⁶ - 10 ⁷)	fix (3*10 ⁶)	fix (2.5*10 ⁶)
cavity position during cool down	flexible (15 mm longitudinal)	fix point (1.5 mm longitudinal)	fix point (1.5 mm longitudinal)

General Parameters

frequency	1.3 GHz		
operation	pulsed: 500 µsec risetime, 800 µsec flat top with beam		
power for High Power Processing in situ	1 MW at reduced pulse length (500 µsec and repetition rate 1 Hz)		
2 K heat load	0.06 W		
4 K heat load	0.5 W		
70 K heat load	6 W		
diagnostic	sufficient for safe operation and monitoring		

Requirements of Couplers for SC Cavities

- strong mismatch in absence of beam between cavity and generator
 -> full reflection
- cold warm transition, low heat loads
- it has to be cleaned to the standard of the sc cavity surfaces (usually by dustfree water)
- clean assembly of coupler to the cavity in the class 10 clean room
- protection of the clean cavity surface during assembly to the cryostat
- safety against window failures during operation
- diagnostic

TESLA Coupler TTF 3

Teststand

traveling wave room temperature

Lutz Lilje DESY

Duration of Processing

Coupler Operation in the TTF Linac

- we have produced 60 couplers of different designs for TTF
- all are tested
- 24 couplers are operated in the TTF-FEL up to now for more than 10000 h
- most of the time at about 100 kW (in favor of SASE experiments)
- up to 400 kW during processing of couplers and cavities
- going to higher power levels above 180 kW without additional conditioning high e⁻ signals were seen at the end of the pulse
- by changing the pulse shape on the end the activity could be suppressed

Operating SRF cavities

- Cryostats
- RF Couplers
- Pulsed operation
 - Low-level RF control
 - Piezoelectric tuner
- Real world example (if the internet does work...)

Pulsed acceleration at TESLA

RF control system

Beam induced transients – Low level RF control

Lutz Lilje DESY

Microphonics

Lutz Lilje DESY

Frequency detuning during RF pulse

Frequency detuning due Lorentz forces of the electromagnetic field in the cavites:

$$f = K \bullet E_{acc}^2$$

K~ 1 Hz / (MV/m)²

Remember:

Cavity bandwidth with main coupler is ~ 300 Hz

25.02.02

Piezoelectric tuner

M. Liepe, S. Simrock, W.D.-Moeller

The piezo as sensor

mechanical oscillations ⇒ *measure piezo-voltage*

• TESLA 9-cell Cavity at 30 MV/m with 10 Hz repetition rate

Thanks for your attention!

25.02.02

Lutz Lilje DESY