A New Course for Fall 1999 Quarter (Physics 409)

Synchrotron Radiation and Free Electron Lasers

Instructor: Kwang-Je Kim (kwangje@aps.anl.gov)

Synchrotron radiation is the electromagnetic radiation emitted by high-energy electrons travelling in curved trajectories. Its high intensity, coherence, wide spectral coverage, and other properties (polarization, time structure,..) make synchrotron radiation a powerful tool for basic and applied studies of physical and biological systems. A number of major research institutions using synchrotron radiation have been built in the U.S. and abroad. In the future, the intensity and coherence will be further enhanced by developing free-electron lasers (FELs). This course will provide an introduction to the basic principles of these radiation devices. The course is aimed for senior undergraduate as well as graduate students.

Prerequisites: undergraduate E&M.

Course Contents:

* Particle and Radiation Beam

Particle beam and radiation beam, phase space description, diffraction and wave optics, coherence and brightness

Synchrotron Radiation

Radiation phenomena and retardation effect, bending magnet radiation, electron storage ring, radiation damping and fluctuation, undulator radiation, spectral and angular distribution, polarization, laser-Thomson scattering, the third-generation light sources

✤ Free Electron Lasers (FELs)

Interaction of radiation and particle beam, pendulum equation, Maxwell-Vlasov equation, principle of FEL oscillators, high-gain FEL and self-amplified spontaneous emission, electron beam requirements, rf photocathode gun and linear accelerator, particle beam manipulation through FEL interaction