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2.1 Beam description 

The goal of this chapter is to provide basic beam dynamics background useful for 
more detailed linear collider discussions. 

2.1.1 Coordinates 

We consider high-energy electron beams: 
 
 E = mc2 γ          (γ ≈ 5 × 105 for E = 250 GeV) 
  (2.1) 

 p = mcβγ,          1
2
11

c 2 ≈
γ

−≈ν=β . 

 
Beams in high-energy accelerators are usually in the forms of a sequence of 
�bunches� moving along the accelerator axis.  A bunch consists of electrons 
specified by the phase space coordinates (x, x′, y, y′, z, δ). 
 
 
 
 
 
 
 
 

Figure 2.1 
 

 s = position of the bunch center along the accelerator axis 
 x,y = transverse coordinates 

 x′ = 
ds
dyy,

ds
dx =′  (2.2) 

 z = position of a particle relative to the beam center 

δ = 
o

o

o

o
E

EE
p

pp −≈−  

These variables are equivalent to the canonical phase space variables (x, px, y, py, 
z, pz). 
 

ν 
x′ 

z 
x s (accelerator axis)
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The angles are very small, of the order of a few tens of microradians (10-5).  Thus 
the paraxial approximation can be used (x′2 and y′2 may be neglected). 

2.1.2 Beam moments and emittances 

Beam distribution in phase space is often of Gaussian shape and is completely 
described by second order beam moments: 

 2
x x=σ : rms beam size in x-direction 

 2
y y=σ : rms beam size in y-direction 

 2
x x′=σ ′ : rms beam angular divergence in x (2.3) 

 2
y y′=σ ′ : rms beam angular divergence in y 

 2
z z=σ : rms bunch length 

 2δ=σδ : rms momentum spread 

 
There are also correlation moments 
 
 .etc,z,xy,xx δ′  (2.4) 

 
Beams are pictorially represented by phase space ellipses: 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.2 
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The phase space area is referred to as the �emittance.�  In the absence of 
correlations, the rms emittance is given by  
 
 xxx ′σσ=ε  
 yyy ′σσ=ε   (2.5) 
 δσσ=ε zz  
 
In the past there have been confusions (sometimes very serious!) about the 
numerical factors π, 4, � etc., but the above convention is becoming the standard 
especially for electron accelerators. 

2.1.3 Luminosity 

Consider a bunch of electron beams colliding with a bunch of positrons moving the 
opposite direction: 
 
 
 
 
 
 
 

Figure 2.3 
 

Let Xee →−+σ  be the cross section that an e+e- collision produces a particular final 
state X such as Higg�s particles.  The event rate for X is roughly as follows: 
 

 Event rate = f
A

NN Xee ••σ• +
→− −+  

 N±: # of positrons (electrons) in each bunch (2.6) 
 A: transverse area of the beam 
 f: repetition rate 
 
The quantity multiplying the collision cross section is called the luminosity L.   
 

 L  f
A
NN −+≈  (2.7) 

 
More accurate calculation with Gaussian beams yield 

e- e+ 
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 L  .f
4

NN

yxσπσ
= −+  (2.8) 

 
 

Exercise: Derive the luminosity formula and discuss the luminosities of NLC 
and TESLA. 

 
 
For NLC (one of the many versions), N+ = N- = 0.75 × 1010, σx = 300 nm, σy = 6 
nm, f = 180 × 90 = 1.6 × 104 s-1.  The corresponding luminosity is L   ≈ 0.4 × 1034 
cm-2s-1.  The geometric luminosity is often enhanced by electromagnetic interaction 
of the colliding bunches by an enhancement factor HD which is about 1.5 in this 
case, making the effective luminosity L  = 0.55 × 1034 cm-2s-1.  The integrated 
luminosity per year becomes, assuming there are 107 seconds in a year (�the Snow 
Mass year�), 5.5 × 1041cm-2, which is also 55 (f barn)-1.  Thus there will be about 
55 events for a process with a cross section of 1 f barn. 

2.1.4 Bunch evolution in free space – the need for focusing 

A bunch may be in a tight, Gaussian shape at a certain location such as the 
collision point.  What happens to the bunch if we let it evolve freely without any 
focusing device?  Answer:  The beam will spread out quickly and will be lost at 
wrong places. 
 
 
 
 
 

Figure 2.4 
 
Let�s consider a bunch at s = 0.  An ith electron in the bunch has the transverse 
coordinate and angle xi(0) and xi′ (0).  Moving to a distance s, the coordinate 
becomes 
 
 )0(xs)0(x)s(x iii ′+=  

 ( ) ( )0xsx ii
′=′  

Figure 2.5 

s 

s = 0 

xi 

′
ix

s 
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Thus the beam moments becomes (<�> = average) 
 
 ( ) ( ) ( ) ( ) ( )0xs0x0x20xsxx 2

i
2

ii
2

i
2

is
2 ′

′ ++==  (2.9) 

 .xsx
0

22
0

2 ′+=   (Assuming no correlation at s = 0) 

 
Thus the beam size increases due to the angular spread 
 
 
 
 
 
  
 
 
 
 

Figure 2.6 
 

At large s ( ))0(s)0( xx σ>>′σ , the angle and coordinate becomes correlated as is 
clear from the above figure, or 
 
 ( ) ( ) ( ) .0xssxsx 2

iii =′  (2.10) 

 
Using the phase space diagram 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.7 

σ s
xx )s(i

i ≈′

( ) ( )s0s xx σ′≈σxi(s) 

s=0 

x′

x 

s≠0 

xsxi ′=∆

σx(s) 
increased beam size 
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The phase space area is no longer the product of σx and x ′σ  due to the correlation.  
In the presence of correlation, the rms emittance is defined to be 
 

 ( ) 2
ss

2
s

2
x xxxxs ′−′=ε  (2.11) 

 
It is easy to show that the emittance so defined is invariant.  Thus the emittance is a 
measure of the inherent quality of the beam, independent of the beam propagation 
properties. 

2.1.5 Beam-envelope function or the “Beta” function 

The s-dependence of the rms beam size can be parameterized by introducing a 
function βx(s).  Please try not to confuse βx with particle speed β = ν/c! 
 

 ( ) ( ) ( ) ( ) 22
x

2
xxxx s00ss ′σ+σ=βε=σ  (2.12) 

 
Since ( ) ( ),00 xxx

′σσ=ε   we have 
 

 ( ) ( )
( )

( )
( )

2

x

x

x

x
x s

0
0

0
0s

σ
σ+

σ
σ=β ′

′
 

  (2.13) 

*
x

2
*

x
s

β
+β=  

 
Here we have written the β-function at s = 0 as ( ),0* xx β=β  which is a standard 
notation for the beta function at the collision point.  βy(s) and βy* are also 
introduced in a similar way.  For s = F >> *xβ , Eq. (2.13) becomes 

 
*

F)F(
x

2

x β
≈β  (2.14) 

For the NLC ,mm2.0*y ≈β  the beam size at the first quadrupole about 1 m away 
is 
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 ( ) ( ) ( ) .5000
*

m110m1 y

2

y
yy ⋅σ≈











β
+σ=σ  (2.15) 

 
That is the beam size increases by a factor of 500 to σy = 3 × 10-6 m.  Although 
this is still small, beams cannot in general be allowed to expand forever, but must 
be focused back to remain in channel.  The beam envelope function or the �beta 
function� is the property of the external focusing arrangement.  This is in contrast 
to the emittance that characterizes the beam properties. 
 
In a linear collider, one normally requires 
 
 ;~ z

*
y σ>β  

 
where σz is the rms bunch length.  If this condition is violated, the beam density 
changes significantly during collisions leading to degradation in the luminosity.  
This is called the hourglass effect. 
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2.2 Transverse Motion 

We have seen that beams must be focused.  Beams must also be deflected 
sometimes.  Beam trajectories in high-energy accelerators are controlled by 
magnets rather than electrodes since the magnetic forces are stronger. 

2.2.1 Dipoles for deflection 

In a dipole field B, the particle trajectory is a circle of radius ρ = p/eB (Larmor 
radius).  A sector dipole can therefore deflect particles: 
 
 
 
 
 
 
 
 

Figure 2.8 
 

Bending is necessary in, for example, circular accelerators where ∆θ must add up 
to 2π! 

2.2.2 Equation of motion in quadrupoles 

In a quadrupole, four poles of alternating polarities are placed symmetrically about 
the beam center: 
 
 
  
 
 
 
 
 
 

Figure 2.9 
 
The field vanishes at origin; Bx = By = 0 at x = y = 0.  Looking at the field lines in 
the figure, we see that the first order term in the expansion near the origin will be 

N 

N 

S 

S 

poles 
coilsy 

x 0 (beam path is perpendicular
to the page) 

l

ρ
=θ∆ l

ρ

p 
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 y
y

BxB,x
x

ByB
o

x
o

y 







∂

∂=







∂
∂=  (2.16) 

 
From Maxwell�s equation, (∇∇∇∇× B) = 0, we derive that the coefficients in the above 
expansions are the same: 
 

 
oo y

Bx
x

ByG 







∂

∂=







∂
∂=  (2.17) 

 
The equation for the transverse momentum components (px, py) = p⊥  is 

 

 ( )⊥⊥ ×= Bp ννννe
dt
d  (2.18) 

 
Now, 

• νννν in the RHS may be approximated by c ez (ez = unit vector along z) 

• 
ds
dc

dt
d ≈  

• β and γ do not change in the static magnetic field 

• 
ds
dyy,

ds
dxx =′=′ . 

The equation of motion in quadrupoles becomes then: 
 

 






−=







Ky
Kx

y
x

ds
d

2

2
 (2.19) 

 

where K = 
p

eG   (p = mγν ≈ mcγ) 

2.2.3 Constant focusing 

For K > 0 and constant, the x-motion is sinusoidal: 
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 Kxxx
ds
d

2

2
−=′′≡  

 
 ( )φ+= sKcosAx  (2.20) 
 
 ( )φ+−=′ sKsinAKx  

 
For a random distribution of A and φ, the beam is a collection of sinusoidal 
trajectories: 
 
 
 
 

 
Figure 2.10 

 
The beam envelope is constant: 
 

 constA
2
1 22

x ==σ  

  (2.21) 
 2

x
2

x Kσ=σ ′  
 
With the definition of the emittance εx and beam envelope function βx, we have  
 

K
2

A2

xxx =σσ=ε ′  

 
 K1x

2
xx =εσ=β  (2.22) 

 







β=

βε=
∴

2
x

xx
2

1K

2A
 

 
This is a well-focused beam in the x-direction.  However, the only problem is that 
it is defocusing in the y-direction! 

constant envelope 
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2.2.4 Discrete quadrupoles and the strong focusing principle 

Fortunately, we will find that a periodic arrangement (lattice) of quadrupoles of 
alternating signs can focus a beam in both x and y directions over a long distance. 
 
To simplify the discussion we make the thin lens approximation, namely that 
particles are deflected without changing the displacement. 
 

 Kxx
ds
dx

ds
dx 2

2
−=′==′′  (2.23) 

 
Integrate once assuming K and x are constants: 
 

 
F
xxxx if −=′−′=′∆  

  (2.24) 
 ∆x = xf � xi = 0 
 
Here F = K∆s is the focal length. 
 
 
 
 
 
 

Figure 2.11 
 

The quadrupole is focusing in the x-direction if F > 0.  However, the same 
quadrupole in the y-direction will be defocusing.  By convention, we mean a 
focusing quadrupole to be focusing in the x-direction.  A defocusing quadrupole is 
represented by 
 
 
 
We can show that the following periodic arrangement of focusing quadrupoles will 
keep the beam focused in the x-direction. 

x 

F
F
x

x −=′∆

∆s 
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Figure 2.12 

 
Distance between quadrupole = 2d.  The focal length F = d/2.  Halfway between 
the quads (A) the beam is focused to a spot similar as in the discussion of section 
2.1.2.  Assuming d ,xx ′σσ>>  the beam at the quadrupole B develops x-x′ 
correlation, i.e., x′ ≈ x/d.  Since the angular deflection at the lens is ∆x′ = 2x/d for a 
lens of focal length F = d/2, the beam will focus back at the mirror point C.  The 
pattern will then repeat itself. 
 
The envelope function would look as follows 
 
 
 
 
 
 

Figure 2.13 
 

The beam phase space diagram 
 
 
 
 
 
 
 
 
 

Figure 2.14 
 

x′ 

x

A

B 

d
x~x′

A

d d
B 

C

x
d
2

d
2

F
1 =

B

βx

A C
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The beam phase space oscillates between a tall ellipse A (small size and large 
angular divergence) to a flat ellipse B (the phase space area being conserved). 
 
However, we still have a problem in the y-direction, since the focusing has an 
opposite sign and will therefore be defocusing. 
 
What will happen if we place a quadrupole of equal strength but opposite sign at 
waist locations? 
 
Quadrupoles at waists do not have much effect on beam since the quadrupole 
action is proportional to the size which is small at waists.  Thus the beam profile in 
x is the same as before. 
 
However, we see now that the focusing properties in the y-direction are identical to 
the x-direction except it is displaced by one step d.  The beam envelopes in the x- 
and y-directions will look as follows: 
 
 
 
 
 

 
Figure 2.15 

 
The beam envelopes in the x- and y-directions are out of step.  Nevertheless, the 
beam is focused in both directions!  The beam can now be transported to a long 
distance. 
 
A periodic array of focusing quad (F), free space (O), defocusing quad (D), �, is 
called a FODO lattice, which is a very versatile beam transport device. 
 
The fact that a combination of focusing and defocusing lenses can provide a net 
focusing was known to light optics.  Application of this strong focusing principle 
to the quadrupole optics to obtain beam focusing in both directions was a critical 
contribution to the development of particle accelerators (Christopfilos, 1950, 
Courant and Snyder, 1952). 

d 

βy 
βx 
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2.2.5 Betatron oscillation and phase advance 

The trajectory of an individual electron in the FODO lattice discussed in Section 
2.2.4 looks as follows: 
 
 
 
 
 
 
 

Figure 2.16 
The motion is pseudo-sinusoidal with a period 4d.  Note that the magnetic lattice is 
periodic with period 2d (between two Fs).  The pseudo-sinusoidal motion is 
referred to as the betatron motion.  An important quantity in the betatron motion is 
the phase advance per lattice period µ.  In the case shown above µ = π. 
 
For a more rigorous analysis of the betatron motion one starts from the equation of 
motion:  
 
 x″ + K(s)x = 0 (2.25) 

 
where K(s) is periodic; K(s) = K(s+L).  A general solution to such an equation can 
be written in the form (Floquet�s theorem) 
 

( ),)s(cos)s(2x 0xx φ+φβε=  
  (2.26) 

( ) ( )∫ β
=φ

s

0 x s
1dss  

 
The envelope function βx is the periodic solution of the following nonlinear 
equation: 
 

 .1K
4
1

2
1 22 =β+β′−β′′β  (2.27) 

 
The phase advance per period is given by 
 

d 
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 ( ).s
1ds

L

0∫ β
=µ  (2.28) 

 
For the special case of K = const, these equations reduce to those in Section 2.2.3. 
 
The phase advance normalized by 2π, ν=µ/2π, is known as the tune. 
 
If we introduce the so-called Floquet variables (θ, u) via 
 

 ( ) x
s

1u
β

=  (2.29) 

 

 ( )s1 φ
ν

=θ  (2.30) 

 
Then Eq. (2.25) reduces to a simple harmonic motion: 
 

 0u
d

ud 2
2

2
=ν+

θ
 (2.31) 

 
For K = 0, the solution of Eq. (2.27) is of the form 
 

 ( ) ( ) .sss
o

2
o

o β
−+β=β  (2.32) 

 
This solution was discussed in section (2.1.4) with the special choice so=0.  For a 
thin lens located at s=sF, Eq. (2.27) can be integrated once to obtain the 
discontinuous charge of the derivative β′: 
 
 ( ) F2 FF β−=β′∆  (2.33) 
 
where βF = β(sF). Equations (2.32) and (2.33) and the periodic boundary condition 
together completely specify the envelope function for a periodic lattice consisting 
of thin lenses and free spaces. 
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We should now make a small refinement to the discussion of Section 2.2.4; we 
have neglected the action of the quadrupoles in waist locations.  This is true only if 
the beam size vanishes at waist, which is impossible for a non-vanishing emittance. 
 
With correct beam dynamics calculations for finite beam sizes, it can be shown 
that a stable beam propagation in FODO lattice is possible if d/2F < 1.  The 
betatron phase advance in this case is given by   
 

 .
F2

d
2

sin =µ  (2.34) 

 
The maximum and minimum beta functions are 
 

 .
sin

2sin1d2
min
max 








µ
µ±=β  (2.35) 

2.2.6 Beam matching 

Beams must enter a transport channel with correct initial conditions so that the 
stable periodic pattern derived in previous paragraphs is reproduced.  For example, 
a beam entering to an FODO channel beginning with an F-quadrupole must have 
the ratio in the x- and y-spotsizes, minmaxyx ββ=σσ  (assuming that εx = εy).  
This requirement is referred to as the �matching.�  If a beam is not matched, it will 
in general produce additional oscillations and eventually beam filamentation, a 
blur-up in phase space distribution and an effective emittance increase due to 
nonlinearities. 
 
Errors in the quadrupole strengths in a linac will cause beams to become 
mismatched.  Thus quadrupole errors must be tightly controlled to avoid an 
increase in the effective emittance. 
 
Designing a suitable profile for beta functions often requires an experienced beam 
optics expert and is the basic step in particle accelerator design.  Note that 
manipulation with the envelope function is an example of non-imaging optics. 

2.2.7 Equation of motion including dipole field and energy error 

The motion in a dipole is circular.  The transverse displacement of a displaced 
circle measured from the reference circle will be sinusoidal with a period of 2πρ:   
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Figure 2.17 
 
 
The equation of motion in dipole for small displacement is thus similar to a 
focusing quadrupole. 
 
 0xx 2 =+′′

ρ
 (2.36) 

 
The equation of motion in the presence of both dipoles and quadrupoles is 
 

 0xK1x 2 =







+

ρ
+′′  

  (2.37) 
 y″ - K = 0 
 
For strong focusing machines, K>> 1/ρ2. 
 
Consider now a particle with a slightly larger momentum p than the reference 
momentum po. 
 

 0
p

pp

o

o ≠−=δ  (2.38) 

 
First the quadrupole strength will be reduced to (1-δ)K.  This change produces a 
correction that is second order.  More importantly, a momentum error produces an 
orbit displacement in a bending magnet. 

x

s 2πρ 

s x 
ρ
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Figure 2.18 
 

This displacement proportional to δ and must be added to the sinusoidal motion.  
Thus the x-displacement can be decomposed into two parts: 
 
 δη+= β xxx  (2.39) 
 
The function ηx is called the dispersion.  In general dispersions should not be too 
large since they contribute to the beam sizes proportional to the beam momentum 
spread. 
 
Quadrupoles displaced transversely produce dipole fields and generate dispersion.  
Thus the quadrupole displacement in a linac must be tightly controlled to minimize 
the residual dispersion and beam size increases due to the momentum spread. 
 
Our convention is that the x-direction is in the horizontal plane where bendings 
occur.  In the vertical direction the dispersion is usually negligible.  The equation 
for dispersion is 
 

 
ρ

=η







+

ρ
+″η 1K1

x2x . (2.40) 

For constant focusing case discussed in Section 2.2.3, the solution is (βx<<ρ) 
 

 ( ) ρ
β≈

ρ+ρ
=η

2
x

2x
1K

1 . (2.41) 

2.2.8 Chromatic effect of the final focus 

Accelerated beams in linear colliders are brought to the interaction point (IP) by 
means of a strong lens (a quadrupole combination) to a tight spot for high 
luminosity collisions.  The relations between the beam size σ and the angular 

po 

po(1+δ) s 

orbit displacement
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spread σ′ before the lens to the beam size σ* and the angular spread σ*′ at the IP 
can be understood from the following figure: 
 
 
 
 
      σ 
 
 
 
          F 
 

Figure 2.19 
 
The beam before the lens is almost parallel. Thus the distance from the lens to the 
IP is the focal length F.  From the figure it is apparent that 
 
 σ′=σ′σ=σ F,F **  (2.42) 
 
From this it follows that σσ′ = σ∗ σ′∗ , that is, the emittance is conserved.  Also 
 

 
*

2

*

*2 FF
β

≡
σ

′σ=
σ′
σ≡β  (2.43) 

 
Note that we have rederived Eq. (2.14) 
 
The focal length of a quadrupole is proportional to the particle momentum p.  Thus 
the IP spotsize will be larger for a beam with a non-vanishing momentum spread 
δ = ∆p/p.  The increase can be estimated by the following figure: 
 
 
 
 
 
 
 
 
 

Figure 2.20 

F 

∆σ* 
σ*′ 

∆F 

p+∆p

p 

σ*
σ*′ 

σ′
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 ( ) ′δσ=′σ∆=′σ∆=σ∆ **** F
F
FFF  

  (2.44) 

 δ
β

=
σ
σ∆∴

**

* F  

 
For the NLC; F = 1 m, β* = 0.2 mm, δ = 2 × 10-3, we find 1** ≈σσ∆ 0, i.e., a 
tenfold increase in the IP spotsize!  Thus the momentum dependence of the spot 
size, sometimes referred to as the chromaticity, is a serious effect. 
 
The chromaticity can be corrected by the scheme schematically illustrated in the 
following figure: 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.21 
 
First a dispersion is created upstream of the lens so that the beam at the lens is 
spread in X according to the momentum δ.  The δ-dependent focusing of the main 
lens can then be corrected by an x-dependent focusing indicated by a pair of 
positive and negative lens located at x > 0 and x < 0, respectively.  In practice the 
x-dependent focusing is accomplished by a sextupole lens, in which the angular 
deflection is given by  
 
 2hxx =′∆ . (2.45) 

 
The sextupole is an example of non-linear elements which could cause resonance 
in the betatron motion.   

δ>0 

δ>0 

η>0 
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2.2.9 Linear and non-linear resonances 

The equation of the betatron motion including errors in linear and non-linear terms 
located at s=0 is 
 

 ( ) ( )∑δ=+
n

n
n2

2
.xasxsK

ds
xd  (2.46) 

 
By using the Floque variable, and by introducing a Fourier analysis of the s-
dependence, the equation becomes 
 

 ∑ θ±=ν+
θ n,m

nim
mn

2
2

2
uebu

d
ud  

 
Here bmn�s are constants depending on the envelope function and the strength of 
the errors. 
 
The unperturbed solution neglecting the RHS is u = e±iνθ.  The RHS then becomes 
a sum of terms e±imθ e±inνθ.  If some of these terms become of the form e±iνθ then the 
equation becomes a resonantly driven harmonic oscillator.  The condition for 
resonance is 
 

± Mν ± N = 0 
 

where M, N are the integers. 
 
For complete transverse the motion in both x- and y-directions, it can be shown 
that the resonance blow-up occurs if  
 
 PNM yx =ν+ν , (2.47) 
 
where M, N, and P are all non-vanishing positive integers.  (If M and N are of 
opposite sign, then the motions are coupled but stable.) 
 
The linear and non-linear errors producing the resonances must be minimized and 
the tune must be chosen away from the resonance conditions as much as possible. 
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2.3 Acceleration and longitudinal motion 

Electrostatic acceleration is limited due to HV breakdown.  Oscillating voltage can 
be arranged so that a particle can be repeatedly accelerated (Ising 1924, Wideroe 
1928, Lawrence 1930, Alvarez 1945, �) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Resonance acceleration → particle motion and the 

oscillating field are in resonance. 
 

Figure 2.22 
 
 

Modern accelerators utilize the rf structures and sources developed during WWII.  
The simplest of the rf accelerating structure is the cylindrical cavity. 
 

R

E. Lawrence 

c
R2 λ

=
ν
π

2
d

βλ
=

Ion 
source 

Wideroe 
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2.3.1 Cylindrical cavity (pill box) 

 
 
 
 
 
 
 
 
 

Figure 2.23 
 

The cavity can support many (∞) modes, from which a desired mode can be chosen 
by exciting the cavity with a correct frequency.  The simplest mode useful for 
acceleration is TM010 mode (TM:  transverse magnetic, 0 → no φ-variation, 1 → 
first radial mode, 0 → no z-variation), with frequency ω = 2.405 c/ρ.  The z-
component electric field is (assume the perturbation due to the small beam hole is 
negligible) 
 

 ( )oooz tcosr405.2J ϕ+ω







ρ

=ε E  (2.48) 

 
The energy gain of a particle passing the center of the cavity at t=0 is 
 

∫ ∫− 





 ϕ+

ν
ω=ε=∆

2d

2d

2d

2d ooz dzzkcosedzeE E  

  (2.49) 

d
2

,cossineVE o ν
ω=θϕ








θ
θ=∆∴ . 

 
Here V = Eod is the maximum voltage for static case.  Clearly, the phase ϕo should 
be 0 for maximum acceleration.  The factor (sinθ/θ) is known as the transit time 
factor, representing the reduction in the effective acceleration voltage due to the 
changing rf field while the particle is being accelerated.  A reasonable choice 
would be θ = π/2 corresponding to d = λ/2, where λ is the rf wavelength, λ = 
2πc/ω.  (We assume that the particles are relativistic ν ≈ c). 
 

ρ 
z (beam axis) 

Ez

Hφ 

d 



2-24 

 
Accelerator Physics and Technologies for Linear Colliders (Winter 2002) Kwang-Je Kim 

To maintain the accelerating field the cavity must be fed with rf power to balance 
the ohmic loss at the cavity surface from the oscillating current.  The power Ploss is 
proportional to the voltage squared: 
 

 .
R
VP

a

2

loss =  (2.50) 

 
The quantity Ra is known as the shunt impedance.  You want a large Ra so that the 
required power for a given acceleration voltage is small.  Note that the shunt 
impedance is inversely proportional to the surface resistance. 
 
In a long linac it is more useful to write Eq. (2.50) in terms of quantities per unit 
distance as follows: 
 

 ( )
( )LR

LVLP
a

2

loss =  

 
Here Ploss/L is the power loss per unit distance along the linac, and similarly for 
V/L and Ra/L.  For room temperature structures (using copper as conducting 
material) Ra/L is proportional to ω .  Thus it is advantageous to employ higher 
frequency rf such as the x-band (ω = 11.4 GHz) for the NLC.  The drawback is the 
fact that the structure becomes small and the wakefield effect becomes more 
severe. 
 
Superconducting rf operating at 2K (the liquid He temperature) is attractive 
because the shunt impedance, being proportional to Q, is about 106 (≈ 1010/104) 
times larger compared to the room temperature structures.  The rf power dissipated 
as heat at 2K becomes negligible.  However, the cryogenic system removing the 
heat at room temperature becomes a non-trivial addition to the complexity and 
cost. 
 

• Exercise:  Discuss the beam power and rf power for NLC and TESLA. 

2.3.2 Multi-cell cavities 

The total acceleration can be doubled by two weakly coupled d = λ/2 pill boxes: 
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Figure 2.24 
 

In general such a cavity supports two modes of oscillations, the 0-mode in which 
two cells are in phase and the π-mode in which the cells are out of phase.  In the 0-
th mode the structure is equivalent to a d = λ cavity for which the transit time 
factor vanishes.  In the π-mode the acceleration doubles since the phase changes to 
180° while the particles pass through the first cavity. 
 
For N>2 cells, there are N modes corresponding to N possible phase shifts per 
cavity, 2πm/N, m = 0,1,N-1.  A desired mode can be chosen by selecting the 
correct rf frequency. 
 
 
 
 
 

Figure 2.25 
This structure can also be viewed as a smooth waveguide loaded by a set of 
diaphragms.  The loading is necessary to reduce the phase velocity, which is faster 
than c in a smooth waveguide, to the particle velocity ν ≈ c for resonant 
acceleration. 

2.3.3 Acceleration in linear accelerators (linacs) 

In a linac structure discussed above, the accelerating field can be represented by a 
traveling sinusoidal wave 
 
 ( )kztcosoz −ω=ε E  (2.51) 

 
where the phase velocity ω/k = c.  A particle entering z = 0 at t = to sees a constant 
phase  
 

 oo tkzt
c
z ω=−






 +ω=ϕ . (2.52) 

beam axis 
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The energy gain in a length L is 
 

( )∫ ω=ε=∆
L

0 ooz tcosLedzeE E  

  (2.53) 

( ) ( )o2
o tcos

mc
Le0)L( ω+γ=γ∴ E  

 
 
 
 
 
 
 

Figure 2.26 
 

Particles are accelerated for 0 < ωto < π and similar intervals separated by 2π.  
Thus electron beams must be in bunches of length ∆z < λ/2 (λ = rf wavelength) 
separated by a multiple of rf wavelengths.  For optimum acceleration (∆z < λ/2) 
bunches should be short and placed at the crest of the rf waveform.  The energy 
spread in the beam is 
 

 ( ) ( ) .z
2
12z2cos1 2λ∆π≈λ∆π−=

γ
γ∆  (2.54) 

 
Exercise:  Discuss bunch length and energy spread for the NLC X band. 
 
It is sometimes desirable that there is a linear variation of energy along the length 
of the bunch.  Thus, the BNS damping discussed in the next subsection requires 
that the energy of the electrons in the tail of the bunch is less than those in the 
head.  This can be arranged by placing the bunches off the rf crests.  However, it 
will be necessary to provide more rf power to achieve the same overall 
acceleration. 

2.3.4 Adiabatic damping 

Emittance is conserved for transverse motion when there is no acceleration.  With 
acceleration the transverse angle becomes smaller: 

0 π 2π 

ωto 
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            x′ 
 
 

Figure 2.27 
 
Thus, the transverse emittance will not be conserved.  However, the canonical 
phase space area (∆x∆px) will be conserved.  Since ∆px = mγβ∆x′, the quantity 
referred to as the normalized emittance 
 
 xxnx γε≈γβε=ε  (2.55) 

 
is conserved, where εx is the unnormalized emittance inroduced in previous 
section.  As the energy increases due to acceleration the unnormalzied emittance 
decreases as 
 
 εx = εnx/γ. (2.56) 

 
This phenomenon is referred to as the adiabatic damping. 
 
Electron beams for linear accelerators are produced by thermionic guns and then 
prepared for the appropriate bunch trains by going through a sequence of bunchers.  
The emittances of the bunched beams entering the linacs are too large for high-
brightness applications such as free-electron lasers and linear colliders.  Therefore 
damping rings are used to reduce the emittance to a desired level before entering 
the main linac. 
 
Recently another type of gun, rf photocathode gun driven by high-power lasers, 
has been developed.  In this gun, bunched beams are generated by laser pulses 
hitting the photocathode surface and are accelerated by the strong rf field.  The 
normalized emittance from the rf photocathode gun is small, about a few times 
10-6 m-rad, which is about the same as the emittance at damping rings.  The rf 
photocathode gun therefore obviates the damping rings for the electron beams.  
However, damping rings are still necessary to achieve a small vertical emittance 
and also for positrons. 

z 

x
p

∆pz 

xp
p

′
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2.3.5 Wakefield and instabilities 

Passage of charged particle beams induce electromagnetic field in rf cavities and 
other structures present in accelerators.  The beam-induced fields, the wakefield, 
act back on the beams and may cause instabilities. 
 
 
 
 
 
 
 

Figure 2.28 
 
Longitudinal wakefields may lead to an energy spread in the beam.  Transverse 
wakefield may cause a blow-up in the betatron motion leading beam breakup 
(BBU). 
 
Wakefields are characterized by a wakefunctions which give the force on a test 
charge following an exciting charge at a distance z. 
 
 
 
 
 
 
 
 

Figure 2.29 
 
For example, the transverse wakefield function W1(z) is defined via the following 
relationship: 
 
 Force (energy per unit distance) on a test charge 
 
 = qQ W1 (z) x1 
 
The transverse beam breakup (BBU) instability can be understood by modeling the 
bunch as two equal short bunches separated longitudinally by a distance σz. 

q 
z 

Q,x1 
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Figure 2.30 
 

The head bunch undergoes a free betatron oscillation.  Assuming a constant 
focusing, K(s) = 2kβ  in Eq. (2.20), 
 
 x1(s) = ( )skcosx�1 β . (2.57) 
 
The equation for the displacement x2 of an electron in the trailing part is 
 

 
( )

E2
skcosx�)z(WNe

xk
ds

xd 11
2

2
2

2
2

2
β

β =+  (2.58) 

 
Here N = # of electrons, E = electron energy, e = electron charge.  The RHS is the 
influence of the wakefield generated by the leading part.  Eq. (2.58) has a solution 
 

 ( ) ( )sksins
Ek4

x�)z(WNesx 11
2

2 β
β

=  (2.59) 

 
The betatron amplitude of the electrons in the trailing part grows linearly and will 
break out of the bunch.  The amplification factor  ϒ over distance s = L may be 
defined as follows: 
 

 Ek4
L)z(1W2Ne

β
=ϒ  (2.60) 

 
For the case of the SLAC linac, taking z = rms bunchlength = 1 mm, W1(z) = 1.8 
V/(pC)(mm)(m), kβ = 6 × 10-5 (mm-1).  For a bunch charge Ne = 8 nC, the 
magnification factor of 1 GeV electron over the length s = 3 km is ϒ = 180! 
 

x2(s) x1(s) 

σz 







Ne
2

1
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The wakefield is a strong function of the iris radius a of the accelerating structure.  
For example the transverse wavefunction W1 scales as a-3.  Thus the tolerance 
problem becomes much more challenging at high rf frequency such as the X-band. 
 
The transverse BBU can be suppressed by arranging the focusing of the trailing 
part to be slightly stronger, i.e., by replacing 2kβ  in Eq. (2.58) by (kβ + ∆kβ)2 with 
 

 
β

β =∆
Ek4

)z(WNek 1
2

. (2.61) 

 
Under this condition both parts of the bunch move together and the BBU is 
suppressed.  The focusing in the trailing part can in turn be made stronger by 
having it accelerated a little less than the head part.  This method of curing the 
BBU instability is known as the BNS damping according to the inventors 
(V. Balakin, A. Novokhatsky, and V. Smirnov, 1983). 
 
Wakefields can persist in the cavities for a long time to influence the motion of the 
bunches following the driving bunch, leading to multi-bunch BBU effects. The 
multibunch BBU can be partially cured by designing the cavities to have a small 
spread in frequencies. 

2.3.6 Longitudinal motion in electron storage rings 

We discuss the electron storage rings as a specific example of circular accelerators.  
In an electron storage ring, electron orbits are bent by dipoles to form closed loops.  
Electrons lose energy to the synchrotron radiation emitted during the bending 
motion, and regain energy in the rf cavity. 
 
 
 
 
 
 
 
 
 

Figure 2.31 
 

e 

synchrotron radiation 

rf cavity 

σ
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The circle in the above figure is meant to be not a real circle but a curve consisting 
of short arcs connected by straight lines. The straight lines represent straight 
sections, which are useful for many purposes:  beam injection, rf station, place for 
collision point for high energy physics machines, or place for insertion devices for 
synchrotron radiation facilities, etc. 
 
A synchronous electron with energy Es enters the rf cavity at the phase φS to 
exactly balance the synchrotron radiation loss.  The rf frequency ωrf is an integer 
multiple of the orbit frequency ω of the synchronous electron so that the phase φS is 
the same turn by turn: 
 
 ωRF = hωS, h = harmonic number. (2.62) 

 
The orbit frequency varies in general with the energy of the electron due to the 
dispersion effect.  Thus an off-energy electron with E = ES +∆E will see an rf 
phase φn at nth turn which is different from φs.  The electron energy will then 
change slowly since the energy is not balanced. 
 
The equations describing the turn by turn evolution are 
 

En+1 = En + eV (cos φn � cos φs) 
  (2.63) 

φn+1 = φn + 2πh αp 
n

sn
E

E - E  

 
The first equation is easy to understand, with eV the peak acceleration voltage.  
Note that eV cos φs is the synchrotron radiation loss.  The second equation comes 
about because the variation in the orbit period is 
 

 
E
E

T
T

p
∆α=∆  (2.64) 

 
Here αp is known as the momentum compaction factor. 
 
For a slow evolution, the difference equation can be written in the differential 
form: 
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( ) ( )scoscos
T

eVE
dt
d φ−φ=∆  

  (2.65) 

.
E
E

dt
d

rfp
∆ωα=φ  

 
(Note:  2πh/T = ωrf) 
 
The equation for the phase excursion ∆φ = φ � φs is  
 

 ( )( )ss
s

rfp
2

2
coscos

TE
eV

dt
d φ−φ∆+φ

ωα
=φ∆ . (2.66) 

 
This equation is in the same form as the equation of a pendulum in gravitational 
field, and is therefore referred to as the pendulum equation.  If sin φs  > 0 the 
motion for the small ∆φ becomes a stable harmonic motion: 

 φ∆Ω−=φ∆ 2
s2

2

dt
d , (2.67) 

 
where 
 

 .
TE

sineV

s

srfp2
s

φωα
=Ω  (2.68) 

 
The quantity Ωs is known as the synchrotron frequency. The motion is unstable if 
sin φs < 0.  The betatron tune νx and νy are usually of the order 10, while the 
synchrotron tune νs = Ωs/ωrev = ΩsT/2π, is usually about 0.01-0.001. 
 
The qualitative feature of the motion can be understood from 
 
 
 
 
 
 

 
Figure 2.32 
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The principle of the phase stability was discovered by V.I. Veksler (1944) and 
E.M. McMillan (1945), and established that particles other than the exact 
synchronous one can be accelerated. 
 
It is useful to introduce the Hamiltonian function corresponding to the longitudinal 
motion as follows: 
 

 ( ) ( )s

2
p cossin

T
eV

E
E

2
H φφ−φ−∆ωα

=  (2.69) 

 
The equation of motion is then 
 

 
φ∂

∂−=∆
∆∂
∂=φ H

dt
Ed,

E
H

dt
d . (2.70) 

 
The phase space trajectories of the motion are obtained easily by finding curves 
that satisfy H = const.  The trajectories are illustrated in Fig. 2.33.  Both the small 
oscillations near the stable fixed point φ=φs and the large amplitude oscillations are 
shown.  For a large excursion, the stable motion is bounded by a separatrix in 
(∆φ,∆E) phase space.  The stable area inside the separatrix is called the bucket.  
The phase space curve is periodic in φ with a period 2π.  There are h buckets in the 
ring. 
 
 
 
 
 
 
 
 
 
 

 
Figure 2.33 

 
In electron storage ring the beam bunches are damped down due to the synchrotron 
radiation to a small region around a stable phase φs.  The height (∆E)A of the 
separatrix is referred to as the energy aperture of the ring for obvious reason.  The 
relative energy aperture (∆EA)/E is typically about a few percent.  Electrons 

∆E

φs 

separatrix 

φ 

∆EA 

π-φs 

unstable fixed 
point 
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scattered into an energy beyond the energy aperture, for example via the intra-
beam scattering, will be lost from the machine. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.34 
 

2.3.7 Emittance changing process:  radiation damping and excitation 

Unlike the case of motion under external forces, processes that distinguish 
individual particles do not conserve the emittance.  An example of such process is 
the emission synchrotron radiation by relativistic electrons on curved trajectories. 
 
Let us review some basic facts of the synchrotron radiation.  The radiation is 
emitted in a cone of angular width ∆θ~γ−1, with a typical frequency 
 
 ωc ≈ γ3c/ρ, (2.71) 
 
where ρ is the radius of the curvature.  There are about α = 1/137 photons 
generated while the trajectory angle changes by γ-1.  Thus the number of photons 
per unit deflection angle is 
 

 αγ≈
θ
γ

d
dn

 (2.72) 

 

λrf occupied bucket 

h buckets 

buckets 
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The synchrotron radiation power is therefore 
 

 ( ) 







ρ








θ

ω≈θ
θ

ω≈ γγ
γ

c
d

dn
dt
d

d
dn

P cc hh  
ρ
γ=

42ce . (2.73) 

 
For a simple discussion of emittance changing processes, let us assume that the 
electron focusing is constant (Section 2.2.3). The emittance change ∆εx due to a 
change in x and x′ can be evaluated as follows: 
 
 ( )22

xx
2

x xx2 ′∆=ε∆ε=ε∆  

  (2.74) 

 2
xx

2

x

x xx ′∆εβ+∆
β
ε=  

 
Here we have assumed <xx′> = 0, and used <x2> = βxεx, <x′2> = εx/βx.  It then 
follows: 
 

 













′β+

β
∆=ε∆ 2

x
x

2

x x
x

2
1  (2.75) 

 
An electron moving on a circular trajectory emits synchrotron radiation in the 
direction parallel to the instantaneous moment p.  The electron momentum is 
thereby reduced by ∆p.  The electron is then accelerated in the rf cavities to 
recover the energy loss.  However the acceleration is in the z-direction, thus the 
electron angle becomes reduced as is clear from the following diagram. 
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Figure 2.35 
 
We have 
 

 
E
Ex

p
xpx ∆′−=
′∆−=′∆ . (2.76) 

 
The change in the emittance is (x does not change) 
 

 
E
Exxx 2

xxx
∆′β−=′∆′β=ε∆ , 

  (2.77) 

  
E
P

dt
d

x
D

x γε−=ε∴  

 
Here Pγ = ∆E/∆t is the synchrotron radiation power.  Let�s introduce the time 
 
 τD = E/Pγ,  (2.78) 
 
which may be interpreted as the time to radiate away electron�s kinetic energy to 
synchrotron radiation.  The emittance evolution is 
 
 εx = εx(0)e-t/τ (2.79) 
 
The time τ is known as the radiation damping time. 
 

z 

∆x′ 

x′ 

∆p 
p 
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Synchrotron radiation is emitted in discrete quanta of photons, leading to the 
heating of the beam.  To estimate the heating effect, we note that since the electron 
energy changes during the emission but not the transverse coordinate x, the 
betatron oscillation coordinate xβ changes according to Eq. (2.39) 
 

 
E
Ex x

∆η−=∆ β  (2.80) 

 
The change in the emittance becomes 
 

 ( ) 




 −∆+

β
=ε∆ βββ

22

x
x xxx1  

  (2.81) 

 ( )( )2

x
xxx21

βββ ∆+∆
β

=  

 
The first term in the above vanishes after averaging.  The next term, which is of the 
second order and positive.   
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β
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Here cωh  is the average energy of a synchrotron radiation photon.  The heating 
rate can be obtained by multiplying the above equation by dnγ/dt = Pγ/ =ωch  # of 
photons emitted per unit time: 
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Edt

dn

Edt
d

2
c

x

2
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2

2
c

x

2
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H

x >ω
β
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The emittance will approach equilibrium value εxo determined by the condition that 
the total rate vanishes: 
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 .
E

c

x

2
x

xo
ω

β
η=ε∴ h  

 
Using the constant focusing case, ρβ≈η 2

xx , and ργ≈ω c3
c h ,  

 

 c
2

3

xo Dγ







ρ
β≈ε  (2.85) 

 
where mcc hD =  = 3.8 × 10-13 m is the Compton wavelength. 
 
In the vertical direction the emittance can in principle damp down to zero since 
there are no excitation mechanisms.  The vertical emittances in practical machines 
do not vanish due to coupling of the horizontal motion via skew quadrupoles. 
 
Modern synchrotron radiation facilities are based on high-brightness electron 
storage rings where the damping effects are optimized for small emittances.  
Damping rings are similar to the synchrotron radiation storage rings.  They are a 
crucial component of the accelerator complex in linear colliders. 
 

2.3.8 Oide effect 

The achievable small beam size in linear colliders could be limited due to 
synchrotron radiation in the FF (final focus) lens as was pointed out by Oide.  In 
Figure 2.36, the trajectory of an electron entering the FF lens with a typical 
transverse displacement σ is shown to be deflected by an angle σ*′ to be focused at 
the IR point.  For a given emittance, the spotsize σ* at IR is minimized by 
minimizing β*, thus maximizing the angle σ*′. 
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Figure 2.36 

 
However, more synchrotron radiation photons are produced as the deflection angle 
is increased in the lens.  The beam size increase due to the photon emission in the 
FF lens can become significant and offset the beam size decrease for a sufficiently 
small β*. 
 

FF lens 

σ 

IR σ*′ 
σ*′ 
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