Homework Set #1 (due: Wednesday, January 15, 2003)

- 1. Consider the motion of a particle with charge q and (relativistic) momentum p in a dipole magnetic field B.
- a) Show that the motion is a circle of radius ρ with $p = q\rho B$.
- b) Show that for an elementary particle of charge $q(=1.6 \times 10^{-19} \text{ Coulombs})$ the relationship between the particle momentum as measured in GeV/c, the magnetic field as measured in Tesla, and the radius of curvature measured in meter:

$$p(GeV/c) = (0.3) \times \mathbf{r}(meters) \times B(Tesla)$$

- c) Estimate the circumference of an accelerator providing 50 TeV (1 TeV = 10^{12} eV) protons with a magnetic bend field of 10 T.
- 2. Consider the parameters for two linear collider projects shown in the table (next page). Please complete the table by computing σ_x^* / σ_y^* , beam power, and luminosity.

Beam 1	Parameters
--------	------------

	TESLA	NLC
CM Energy (GeV)	500	500
RF Frequency (GHz)	1.3	11.4
Linac rep rate (Hz)	5	120
# bunches/pulse	2820	190
# particles/bunch (10 ¹⁰)	2	0.75
Emittances $\gamma \varepsilon_x / \gamma \varepsilon_y$ (10 ⁻⁶ m-rad)	10/0.03	4/0.07
β_x^* / β_y^* (mm)	15/0.4	8/0.125
Bunch length σ_z (µm)	300	125
Beam size σ_x^* / σ_y^* (nm)		
Beam angular divergence $\sigma_{x'}^* / \sigma_{y'}^*$ (µrad)		
Beam power (MW)		
Luminosity $(10^{33} \text{ cm}^{-2} \text{s}^{-1})$		