Homework Set #6 (due: Wednesday, February 19, 2003)

1. As discussed in the class, we have beam-beam tune shift (due to collision)

$$(\Delta v)_{bb} = \pm \frac{N}{4\pi} \frac{r_0}{\epsilon_N} / \operatorname{crossing}$$

where N is the # of particles in the opposing beam $r_0 =$ classical radius of the particle in consideration $\epsilon_N =$ normalized emittance = $\gamma \epsilon_x$

Also the incoherent tune shift on particles due to the space charge effect of other particles in the same beam:

$$(\Delta v)_{\rm inc} = \frac{-1}{4\pi} \frac{r_0}{\gamma_{\epsilon_N}^2} \left(\frac{dN}{ds}\right) \cdot C$$

Here $\frac{dN}{ds}$: line density

- γ : relativistic γ
- a. Why is the sign of $(\Delta v)_{inc}$ negative?
- b. Compute beam-beam tune shift for p in Tevatron ($p\overline{p}$ collision).

$$\begin{split} \epsilon_N &= 5 \times 10^{-6} \text{ m-rad} \\ N_{\overline{p}} &= 2 \times 10^{10}, \, N_p = 2 \times 10^{11} \end{split}$$

c. Compute incoherent tuneshift for electrons in Tesla damping ring (electron).

$$\begin{split} \epsilon_{N} &= 1 \times 10^{-5} \text{ m-rad} \\ c &= 17 \text{ km} \\ \sigma_{z} \text{ (rms bunch length)} = 6 \text{ mm} \\ \text{Energy} &= 5 \text{ GeV} \end{split}$$

- 2. A 100-m circumference storage ring is made up of 20 F0D0 cells with a phase advance of 60° per half cell. There are thin dipoles midway between the quadrupoles. Neglect the focusing in the dipoles. You can treat the quadrupoles as thin lenses.
 - a. What are the quadrupole strengths (f) and the horizontal and vertical tunes?
 - b. Sketch the β -functions and η for one cell.
 - c. The dipoles have random strength errors with an rms of $\sigma = 0.01\%$. What is the rms closed-orbit error at one of the horizontally focusing quadrupoles?
 - d. The quadrupoles have random focusing errors with an rms of $\sigma = 0.05\%$. What is the rms spread in tunes and the rms error in the β -functions?
- 3. Continue working with the storage ring in problem 2.
 - a. What are the horizontal and vertical chromaticities?
 - b. Sextupoles are placed at the quadrupole locations to make these chromaticities equal to zero. What are the required sextupole strengths?